Entries tagged as mathematicsFriday, May 18. 2007Images to vectors: Correct isomorphism![]() I always wondered why it didn’t work to compute the dual Gabor atom by using the image-to-vector methods I explained previously [1,2,3]. Dr. Kaiblinger showed me that the correct way was to use that special isomorphism that walks along the diagonal of the image. Because width and height have to be relatively prime, that path spans the whole image space. And because there are no jumps over pixels, 2D-modulations stay 1D-modulations. This is not yet proved formally, but I can already show first experiments: CODE: > p=64; q=75; idx=linind(p,q); %index vector
> img=zeros(p,q); N=p*q
N = 4800
> img(idx(1:50))=1; imagesc(img); %step 50
> img(idx(1:100))=1; imagesc(img); %step 100
> img(idx(1:1000))=1; imagesc(img); %step 1000
> img(idx(1:4000))=1; imagesc(img); %step 4000
A 2D-frequency is given as a tensor product of two 1D-frequencies with signal lengths p and q, respectively. If their modulation parameters are given as kp and kq, then the corresponding 2D-modulation is given by a 1D-modulation of length N and parameter CODE: > kp=4; frp = exp(2*pi*i*(0:p-1) * kp/p);
> kq=3; frq = exp(2*pi*i*(0:q-1) * kq/q);
> frpq = frp’ * frq; size(frpq)
ans =
64 75
> imagesc(real(frpq)) CODE: > kN = mod(kq*p-kp*q, N)
kN = 4692
> frN = exp(2*pi*i*(0:N-1) * kN/N);
> plot(real(frN(1:1000))) CODE: > frN2=zeros(p,q);
> frN2(idx)=frN;
> compnorm(frpq, frN2)
quotient of norms: norm(x)/norm(y) = 1
difference of normalized versions = 1.478e-12
ans = 1.4780e-12 So those two 2D-frequencies are really identical. The plot of the second one is identical to the first one, so we skip it here. Now we want to see if the 2D-dual of a separable 2D atom obtained by that isomorphism is identical to the tensor product of the two 1D-duals. Continue reading "Images to vectors: Correct isomorphism" Friday, April 27. 2007Sampling lattices as subgroups![]() I still have some difficulties understanding sampling lattices in the 4D position-frequency space of images. Here’s a flow of thoughts on this: A 1D-signal of length N can be interpreted as an element of CN. (This was always confusing me: an N-dimensional vector is only a 1D-signal!) But in TFA it is actually considered as an infinite periodic vector with period N. Therefore the index set is not just {1,...,N} but rather ZN:=Z/NZ. This set is a finite group under addition modulo N. The TF-domain of that 1D-signal space is ZN×ZN and therefore 2D; it still has the group structure (by components). A sampling subset Λ of this TF-plane takes out certain time-locations and frequencies. If one has a fixed window function g with same signal length, the Gabor family with regard to that sampling subset is the set of those shifts and modulations of the Gabor atom g where the time-locations and frequencies are given by Λ. If Λ has enough elements, namely |Λ|>N, then...??? No, the redundancy doesn’t tell anything about whether the Gabor family is a frame! It is automatically a frame (in the finite setting) as soon as it spans the whole signal space. So what does that redundancy tell us? And why is it automatically large enough as soon as the Gabor family is a frame? Or what? Another open question is why or when one should have a subgroup as sampling subset. What advances does one get when the sampling is done on a subgroup? If Λ is a subgroup, then there is a dual? Is there no dual when Λ is no subgroup? Or does it just depend on the redundancy then? It might have something to do with the fact that the Gabor frame operator commutes with TF-shifts along that subgroup. The things get even trickier for 2D-signals. An image of size p×q is also considered as an infinite periodic signal with periods p in one direction and q in the other. The signal space has N=pq dimensions. The index set is Zp×Zq. The TF-domain (actually position-frequency domain) becomes (Zp×Zq)×(Zp×Zq) and is therefore 4D. What’s unclear here is the term of separability with regard to the sampling subset. In the 1D-case (TF-plane is 2D) one names the sampling subset a separable lattice when the shifts and modulations are defined by the multiples of a divisor of N. I.e., one gets a rectangular grid (lattice) in the TF-plane in this case: For every time-shift there is the same set of modulations. A non-separable case could be given by a set of random sampling points. But these don’t form a subgroup in general. A non-separable subgroup could look like a rotated version of a separable lattice. For a rotation by 45° (π/4) one gets the special case of a quincunx lattice (if the correct distances are taken). And now to separabililty of a 4D-lattice: What does a 4D quincunx look like? Or another 4D non-separable lattice? Does this mean that whenever I can split into two 2D-lattices, one talks about separable lattices, independently from the question whether these two are separable again? I think separable means here that one either has a position-lattice ((x1,x2)-lattice) and a frequency lattice ((ω1,ω2)-lattice) or an (x1,ω1)- and an (x2,ω2)-lattice, independently from whether these are separable themselves or not. But how does one construct a 4D-set out of two 2D-sets with MATLAB/Octave? Continue reading "Sampling lattices as subgroups" Wednesday, April 18. 2007Electric guitar string gauge calculation![]() I currently wonder what string gauge (diameter) I should use for my electric guitar. The standard is .009 (i.e. 0.009″ for the high e-string). Thinner strings allow easier string bending, but one has to play with less finger pressure to avoid detuning. As I like to tune all strings down by one halftone, the strings get even “softer”. So one should take a higher string gauge when tuning down. The question is now: Do downtuned .010’ers correspond to normally tuned .009’ers? What gauge should one use when one wants to tune down e.g. by a whole tone and have the “softness” of .009’ers? Here’s my try of a calculation: Does a downtune by one octave correspond to a loss of half the tension? Whatever amount the tension will get, it doesn’t decrease linearly with the halftones—remember the different distances between the frets! How does one calculate this scale? You can’t just divide the half of the string length by 12 to get the steps between the frets. Calculating the fret stepping of a guitar
If you don’t believe my derivation, maybe you believe a (modified) function plot: CODE: n=0:24; dv=1./(2.^(n/12));
plot([1-dv 1], ones(1, length(dv)+1), ’+r’)
hold; plot(1-dv(0+1), 1, ’+b’) %zeroth fret
plot(1-dv(12+1), 1, ’+b’) %first octave
plot(1-dv(24+1), 1, ’+b’) %second octave
plot(1-dv(5+1), 1, ’+m’) %fifth fret
The blue crosses indicate the first two octaves, occurring when ½ (=50%) and ¾ (=75%) of the length are removed. The pink cross indicates the fifth fret at about ¼ (=25.085%) of the length. Every guitarist should recognize the fret stepping here! Gauge stepping when tuning down
where C is a constant depending on the material. The aforementioned scaling is still valid for the frequencies, i.e., when the frequency f is tuned down by n halftones, the resulting frequency fn is given as
what can be verified for f=440Hz: The next lower tunes are 415.3Hz (n=1) and 392Hz (n=2), and the next higher tunes are 466.2Hz (n=−1) and 493.9Hz (n=−2). Replacing f by fn in the previous equation yields that when the tension is to be kept, one has to take strings with diameter The other way round, fixing δn=0.010 (the taken string gauge) and δ=0.009 (the desired string gauge “feel”), one derives what results in n=1.82 in this example, a downtune of slightly less than a whole tone. Tuning down .010’ers a “complete” whole tone corresponds to a string gauge of .0089’ers, so really almost .009’ers. As a final rule of thumb, the steps between the string gauges correspond to tune changes of a whole tone. The following table shows how certain string gauges “feel” when they are tuned down:
Thursday, April 12. 2007Images to vectors: Algorithm![]()
Given an image im of size p×q with gcd(p,q)=1.
Let’s try this with our zebra. In my previous tries I simply took p=479 and q=480 to have gcd(479,480)=1, but 479 is a prime number and I therefore have no possibility to divide it by some step size. For GA I have to lay some kind of lattice over the image. So there is actually a second condition forbidding p and q to be prime. I take p=473 instead, it has 11 and 43 as divisors. CODE: > im=img(4:476,:);
> [p q]=size(im), N=p*q
p = 473
q = 480
N = 227040
> alldiv(N)(1:13)
ans =
2 3 4 5 6 8 10 11 12 15 16 20 22 As one can see, N has many divisors, but e.g. 19 is not one of them. We can’t take e.g. 9 although it doesn’t occur either, as it is divided by 3, which is a divisor of N. Taking such a wrong step size will lead one back to the first pixel too early and one can never span the whole image. CODE: > s=9; idx=mod((1:s:N*s)-1, N)+1;
> find(idx==1)
ans =
1 75681 151361
> s=19; idx=mod((1:s:N*s)-1, N)+1;
> find(idx==1)
ans = 1
> find(idx==2)
ans = 23900
> imv(idx) = im(:);
> plot(imv) And now the other way round:
CODE: > rim=reshape(imv(idx),p,q);
> size(rim)
ans =
473 480
> imagesc(rim) ![]()
By the way, another try of comparing the FFT of the vector with the FFT2 of the image shows again that one cannot get the FFT2 by doing an FFT of the vector. This is because the line-patterns in the image might not be preserved under that transform, as neighboring pixels might not become neighbors in the resulting vector. Wednesday, April 4. 2007Images to vectors: Quick index matrix![]()
I found a quicker way to compute the index matrix I mentioned:
CODE: > tic; [jj kk]=meshgrid(1:p,1:q); toc
Elapsed time is 0.080879 seconds.
> size(jj), size(kk)
ans =
479 480
ans =
479 480
> tic; idx=mod(b*q*jj+a*p*kk,N)’; toc
Elapsed time is 0.129128 seconds.
> idx(p,q)=N; %valid index value
> imv=zeros(1,N);
> tic; for j=1:p; for k=1:q;
> imv(idx(j,k)) = im(j,k);
> end; end; toc
Elapsed time is 6.770042 seconds. So nothing with 58 seconds anymore. ![]() Tuesday, April 3. 2007Images to vectors and back![]() Regarding the previous questions I noticed that GA on LCA groups is too general for my concerns and that the study of GA on finite abelian groups is enough.
In a certain paper HGFei published a result that for p×q-images where p and q are relatively prime there is an isomorphism to a vector of length N=pq. The theory considers the groups
CODE: > im=img(2:480,:);
> size(im)
ans =
479 480
> gcd(479,480)
ans = 1
Just for a first test I set α=p and β=q and define a primitive mapping function. (I’ll have to find a quicker transform, as in my tests the switching takes too long. But this could be due to the actually large test image. In addition, I currently only manage to do the backward step by storing the indices in an index matrix.)
CODE: > function ii=ma2ve(j,k)
> p=479; q=480; a=p; b=q;
> ii = mod(b*q*j+a*p*k , p*q);
> if ii==0; ii=p*q; end
> endfunction
> ma2ve(1,1)
ans = 1
> ma2ve(1,2)
ans = 229442
> p*q
ans = 229920
I have to return N instead of 0 to have a correct index value. Although the mapping is actually an isomorphism I didn’t know how to go back to the tuple (j,k), so I store the indices in an index matrix while building the image vector:
CODE: > idx=zeros(p,q); imv=zeros(1,N);
> tic; for ii=1:p; for jj=1:q;
> idx(ii,jj) = ma2ve(ii,jj);
> imv(idx(ii,jj)) = im(ii,jj);
> end; end; toc
Elapsed time is 58.358711 seconds.
58 seconds!?
CODE: > plot(imv)
Continue reading "Images to vectors and back" Tuesday, March 27. 2007Raising questions, 70-73![]()
I noticed that I’ll have to find a representation of images as vectors, and not as matrices as usual. Because otherwise I won’t be able to describe linear operations as matrices on vectors. To be able to do things like an SVD or a look at eigenvalues or eigenvectors, I’ll have to evaluate matrices on vectors. For building lattices or Gabor systems I’ll have to try to use the algorithms which have been developed for 1D-signals. This leads me to Gabor Analysis on locally compact abelian groups, but group theory is a little bit away from ordinary signal analysis. Reading first intros, I asked myself:
Posted by Stephan Paukner
in Master's Thesis
at
10:29
| Comments (0)
| Trackback (1)
Defined tags for this entry: mathematics
Thursday, March 15. 2007Convolving a zebra with modulated Gaussians![]() I finally managed to scale the reconstructed images appropriately such that one can see at what locations certain 2D-frequencies occur. I FT’ed an image of a zebra and “windowed” the FT with a shifted Gaussian. Doing the inverse FT of that cutout yields a convolution of the input image with a modulated Gaussian, corresponding to
This is the zebra, a 480×480 pixel sample I clipped from an image I found in the Wikimedia Commons, and its FFT2:
Again, I rotated the image of the FT by 90° to match the orientation of the “jets” with the line patterns in the zebra. Clearly, the vertically oriented frequencies dominate the image. Now I window the FT-image by placing a Gaussian at the origin. This results in a low-pass filter. The IFT gives a reconstructed image which only contains the lowest frequencies:
The left half shows the (unmodulated) Gaussian with which the original image has been convolved. The right half shows the reconstructed image—the animal has lost all its zebra patterns! This effect is identical to a Gaussian blur. Continue reading "Convolving a zebra with modulated Gaussians"
Posted by Stephan Paukner
in Master's Thesis
at
18:13
| Comments (0)
| Trackback (1)
Defined tags for this entry: mathematics
« previous page
(Page 3 of 5, totaling 35 entries)
» next page
|
AboutCalendar
ArchivesCategoriesShow tagged entriesandroid antenna anti-spam apache astronomy austria automobile ballooning bash bluetooth bug career cloud collecting comic cooking cw debian dreams education electronics event fail fashion finance flickr fuerteventura fun gentoo geography german gnu-linux gnucash google google earth graphics guitar hardware history image processing internet kernel kids language lanzarote lhc lifestyle linkroll literature ltd machine learning making mallorca mathematics matlab microsoft migration movies music numismatics octave pdf perl philately philosophy phone photo gear photography physics podcast politics postfix private programming public transport rant religion review samsung science security shtf social web software statistics storage sustainability symbian tablet time lapse transceiver tv usenet video virtualization wordplay work www yahoo youtube
Syndicate This BlogFollow meBookmarks
Powered by |