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Abstract

Signal processing plays an important role in modern society: Its applications span
a comprehensive domain from automotive to entertainment industry, from medical
diagnostic technology to communication services. Signals are electrical information
that represents acoustical, optical or other data, like brain waves (EEG) or geophys-
ical data, whose values exhibit a certain variability in location and time. These elec-
trical data are to be edited, filtered, amplified, denoised, interpolated, transmitted or
processed in some other way.

Fourier analysis quickly established as a standard method in signal analysis. Math-
ematically, signals are represented as discrete periodic functions that are composed
of pure oscillations with different frequencies and amplitudes, and the Fourier trans-
form unveils in what amount what frequencies are contained in a signal. But time
information gets lost thereby, what led to the idea of a windowed or short-time Fourier
transform (STFT), where only short time-intervals in the signal undergo a Fourier
transform, cut out by a smooth window function that is subsequently shifted over the
signal. However, the time-frequency information that the STFT provides is highly
redundant, and a reduction is sought while preserving the complete time-frequency
behavior of a signal.

Digital images can be handled just like digital sound signals, they’re representable
as a sum of pure two-dimensional (2D) oscillations. Mathematically, there is no dis-
tinction at all, as the theory is developed in general function spaces. But it can be
confusing in practise to talk about the time-frequency analysis of images, as the image
signal does not evolve in one-dimensional time, but on a two-dimensional plane. Fur-
thermore, the time-frequency plane becomes a four-dimensional position-frequency
space, what makes it difficult to produce descriptive graphs of windowed 2D Fourier
transforms of images. Nevertheless, mathematically the terms time and frequency are
handled in arbitrary dimensions.

The problems that emerge in signal analysis nourish a standard task in mathemat-
ical analysis, namely that of describing arbitrary functions by the help of a set of
simple functions that possess well-known and easy-to-handle analytical properties.
Fourier analysis fulfills this by expanding a signal into a sum of elementary oscilla-
tions. The STFT equivalence is to use a sufficient set of time-frequency shifts of a
single window function instead. The concern about when the emerging analysis and
synthesis operations are reasonable is handled by the theory of frames, a generaliza-
tion of the concept of bases. Gabor analysis unites these mathematical approaches: It
yields conditions for a set of time-frequency shifted window functions to be a frame
for the signal space and provides an understanding of signals by expanding them into
a sum of those elementary shifted and modulated atoms.
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This thesis wants to examine how the concepts of Gabor analysis apply to the
case of digital images and what new problems emerge compared to one-dimensional
signals. The following paragraphs summarize how this work is organized.

Chapter 1 is a summary of the foundations of time-frequency analysis. The Fourier
transform and STFT are introduced in general function spaces that possess an inner
product and are thus equipped with some kind of geometry. It makes sense to only
consider functions of finite energy, making the space of square-integrable functions,
L2.Rd /, the candidate of choice.

Chapter 2 introduces the concept of frames in general (separable) Hilbert spaces.
The special case of Gabor frames is again treated in L2.Rd /. It is explained that
Gabor expansions consider two window functions: The analyzing prototype and its
reconstructing dual that is dependent on the chosen subgroup of the time-frequency
plane. Whereas signal processing previously was of the time-continuous analog type,
it has changed to a finite time-discrete model today due to the high availability of
digital computers. The chapter ends with the necessary step to a time-discrete signal
model.

Chapter 3 is dedicated to finite discrete Gabor frames for a finite discrete periodic
signal model, eventually enabling computational implementations. A finite sequence
of real or complex values can be represented as a vector, where the dimensionality of
the emerging signal space should not be confused with the one-dimensionality of the
vector shape. Things become related to terms of linear algebra, and the matrix repre-
sentation of frames is introduced. Finally, dual Gabor windows on general sampling
subgroups are shown that possess a significant non-zero imaginary part.

Chapter 4 takes the step from 1D signals to 2D images. It explains how images
are represented in digital computers. The chapter provides an understanding of 2D
elementary oscillations and the idea of 2D frequencies. The 2D Fourier transform un-
veils to what extent low frequencies contribute to the homogeneous areas in natural
images and how higher frequencies are responsible for contours, edges and sharp-
ness. Then the author provides a way of how to visualize the 4D position-frequency
behavior of an image by presenting a collection of 2D images. The chapter ends with
a treatment of 2D windows for the 2D STFT of images.

Chapter 5 finally comes to Gabor expansions of images. It turns out that the pos-
sible non-separability of 2D windows intervenes with the various depths of the non-
separability of 4D sampling subgroups. The following sections reflect the order of
increasing difficulty for computational implementations, going from twofold separa-
bility (of both 2D atom and 4D lattice) to true non-separability (of both atom and
lattice). All cases are accompanied by numerical experiments with Gabor coefficient
thresholding. Separable atoms allow for the consideration of tensor products of two
1D frames. The case of fully separable lattices allows for an efficient Gabor expansion
by using the sampled 1D STFT. The involvation of non-separable subgroups leads to
2D duals with non-zero imaginary parts as well. Under certain conditions general 2D
atoms on 4D grids can be mapped to a 1D case. Finally, an approach for obtaining
quicker 2D Gabor expansions is provided by signal downsampling.

“Serious” image processing is not treated in this thesis, as implementations that
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involve Gabor systems had to be compared with approved existing methods. This
work thus ends by providing references to literature that consider image processing
methods by Gabor expansion, and lists some questions for further research.

The published numerical computations were performed on a PC using a single
1.6 GHz CPU and 1 GB RAM. The experiments were implemented in MATLAB 7
and Octave 2.9 on the Debian GNU/Linux operating system (‘lenny’, Kernel 2.6) and
involved functions from the NuHAG MATLAB toolboxes. All figures were produced
with MATLAB or The GIMP. The typesetting was done in LATEX.

This thesis is available in the web at

http://paukner.cc/math/ga4ip/

and probably also via http://nuhag.eu/.

http://paukner.cc/math/ga4ip/
http://nuhag.eu/




Chapter 1

Basics of Time-Frequency Analysis

In this chapter we summarize the most important terms and results of time-frequency
analysis. Mathematically, this topic is developed on general function spaces, whereas
for practical purposes this has to be adapted to a finite-dimensional time-discrete
model. Whenever it appears reasonable, functions are referred to as signals even in
the infinitesimal context.

1.1 Notation and Spaces

Cartesian products of the standard number sets are denoted by Rd , Cd , etc., with d
reflecting the dimension of a signal. The symbol I is used for a countable index set,
and its cardinality is given by jI j. For n 2 N we abbreviate hni ´ f0; : : : ; n � 1g.
We visually distinguish the complex unit i 2 C from an arbitrary index i 2 I . The
complex conjugate of z 2 C is written as Nz. The conjugate transpose of a matrix A
is A� ´ A

T
. The space of all m � n matrices is Cm�n, where the matrix lines are

numbered 0; : : : ; m � 1 and the columns 0; : : : ; n � 1.
During the text, symbols like X; Y are used for Banach spaces and H ;K for

Hilbert spaces. A sequence of elements fi 2 X , i 2 I , is denoted by ffigi2I and
is to be distinguished from an unordered collection of the elements.

The finite linear span of a subset A � X is denoted by spanA and its closure in the
norm-topology of X is written as spanA.

L .X; Y / is the space of bounded linear operators T WX ! Y . The operator norm
is given as

jjjT jjjL .X;Y /´ sup
u¤0

kT ukY
kukX

D sup
kukXD1

kT ukY D sup
kukX�1

kT ukY :

For notational convenience, the subscripts of the respective norms might be dropped.
Regarding the notation of operations on functions, we shortly write UTf .x/ for�
U.Tf /

�
.x/.

The sequence spaces lp.I /, 1 � p � 1, are Banach spaces of complex sequences
c D fcigi2I for which in the case p <1 the norm

kckp ´

 X
i2I

jci j
p

!1=p
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is finite; for p D1 the supreme-norm

kck1´ sup
i2I

jci j

is finite. For p D 2 and I D Zd one gets the Hilbert space l2.Zd / with the inner
product

hu; vi2´
X
k2Zd

ukvk :

The inner product in Cd is written as x �y ´
Pd
iD1 xiyi and we abbreviate x2´ x �x.

The Euclidean norm is jxj ´
p
x � x.

The Lebesgue spaces Lp.Rd / (or shortly Lp), 1 � p � 1, are Banach spaces of
measurable functions f WRd ! C for which in the case p <1 the norm

kf kLp ´

�Z
Rd
jf .x/j

p
dx

�1=p
is finite; for p D1 the essential supreme

kf kL1 ´ ess sup
x2Rd

jf .x/j

is finite.
Elements of Lp are actually classes of functions, identifying functions which only

differ on zero-sets with respect to the Lebesgue measure. Continuous functions f 2
L1.Rd / yield kf kL1 D kf k1.

Again, the case p D 2 provides a Hilbert space, L2.Rd /, equipped with the inner
product

hf; giL2 ´

Z
Rd
f .x/ g.x/ dx :

For notational convenience, we might again drop the subscripts whenever it is clear
what inner product is currently in use.

C0.Rd / is the space of continuous functions on Rd vanishing at infinity. The space
of test functions C1c .R

d / consists of all infinitely differentiable functions with com-
pact support. It lies dense in Lp.Rd / for p <1. The Schwartz class S .Rd / consists
of all infinitely differentiable functions which are rapidly decreasing at infinity, i.e.,

lim
jxj!1

x˛Dˇf .x/ D 0 8˛; ˇ 2 Nd
0 8f 2 S .Rd / ;

where we use the multi-index notation x˛ ´ x
˛1
1 � � � x

˛d
d

and

Dˇf .x/´
@ˇ1 � � � @ˇd

@x
ˇ1
1 � � � @x

ˇd
d

f .x1; : : : ; xd / :

The absolute value of ˛ 2 Nd
0 is j˛j ´

Pd
iD1 ˛i .

As S .Rd / � Lp.Rd / for 1 � p < 1 and S .Rd / contains C1c .R
d /, it is also

dense in Lp.Rd /.
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1.2 The Fourier Transform

1.2.1 Definition For f 2 L1.Rd /, the Fo u r i e r t r a n s f o r m is defined as

Of .!/´ .Ff /.!/´

Z
Rd
f .x/ e�2�ix�! dx : (1.1)

The Fourier transform is the most important tool in signal analysis. It can be
interpreted as an inner product of a function with an exponential function t 7! ei!t

and therefore as a projection of a given function onto a circle function with certain
frequency. The value of the integral shows how much they have in common, i.e., in
what amount the given signal f contains the pure frequency !. The function Of .!/
now describes the frequency behavior of the signal f .x/.

1.2.2 Lemma of Riemann–Lebesgue If f 2 L1.Rd /, then Of is uniformly continuous
and limj!j!1 j Of .!/j D 0.

The Fourier transform is even essentially bounded for L1-functions, so we have a
mapping

F WL1.Rd /! C0.Rd / ;

and as kFf kL1 � kf kL1 we have jjjF jjj � 1.
The relevance of the Schwartz class now becomes clear when we state that the

Fourier transform yields a continuous bijection from S .Rd / to S .Rd /, what is not
the case for L1.Rd /. This is because the Fourier transform has the important property
to turn derivations into multiplications, i.e., to turn analytic operations into algebraic
ones:

F .D˛f / D .2� i/j˛jX˛.Ff / (1.2)

and
D˛.Ff / D .�2� i/j˛jF .X˛f / ; (1.3)

where X˛ is the multiplication operator .X˛f /.x/ ´ x˛f .x/. It follows from the
definition that S .Rd / is stable under derivations and multiplications, i.e.,

X˛f 2 S .Rd / and D˛f 2 S .Rd / 8˛ 2 Nd
0 8f 2 S .Rd / :

Using the reflection operator .If /.x/´ f .�x/ one can show that F 2 D I and so
F 4 D IdS .Rd /. This yields

F�1 D I F (1.4)

and we can give an inversion formula explicitly:

1.2.3 Theorem ( I n v e r s i o n Fo r m u l a ) The Fourier transform is a bijection from
S .Rd / to S .Rd / and the inverse operator is given by

.F�1f /.x/ D

Z
Rd
f .!/ e2�ix�! d! 8x 2 Rd : (1.5)

Furthermore, F is unitary, i.e.,

hFf;FgiL2 D hf; giL2 8f; g 2 S .Rd / :
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P r o o f . See [Wer97, V.2.8].

We therefore have
kFf kL2 D kf kL2 8f 2 S .Rd /

if we see S .Rd / as a dense subspace of L2.Rd /. Now, as we have F well defined, bi-
jective and even k–kL2-isometrical on a dense subspace of L2.Rd /, it can be extended
to an isometric operator on all of L2.Rd /. We will use the same symbol F although
the Fourier transform on L2.Rd / is not defined by (1.1) anymore if f 2 L2 nL1.Rd /;
Ff is then no function, but an equivalence class of functions.

1.2.4 Theorem of Plancherel If f 2 L1 \ L2.Rd /, then

kf kL2 D kFf kL2 : (1.6)

As a consequence F extends in a unique way to a unitary operator on L2.Rd / and
satisfies P a r s e v a l ’s f o r m u l a

hf; giL2 D hFf;FgiL2 8f; g 2 L2.Rd / : (1.7)

In signal analysis the isometry of the Fourier transform has the interpretation that
it preserves the energy of a signal.

The Fourier transform can also be seen as a mapping between more general Lp-
spaces:

1.2.5 Theorem of Hausdorff–Young Let 1 � p � 2 and q be the conjugate exponent
such that 1

p
C

1
q
D 1. Then F WLp.Rd /! Lq.Rd / and kFf kLq � kf kLp .

Again, the Fourier transform is only defined by (1.1) if f 2 L1 \ Lp.Rd /.
For more details on the role of the Schwartz class for the Fourier transform see

[Wer97, V].

1.3 Fundamental Operations

Translation and Modulation

1.3.1 Definition For x; ! 2 Rd we define the t r a n s l a t i o n o p e r a t o r Tx by

.Txf /.t/´ f .t � x/ (1.8)

and the m o d u l a t i o n o p e r a t o r M! by

.M!f /.t/´ e2�i!�tf .t/ : (1.9)

It is clear that T �1x D T�x andM�1! DM�!. The operator Tx is also called a t i m e
s h i f t , and M! a f r e q u e n c y s h i f t . Operators of the form TxM! or M!Tx are
called t i m e - f r e q u e n c y s h i f t s (TF-shifts). They satisfy the c o m m u t a t i o n
r e l a t i o n s

TxM! D e
�2�ix�!M!Tx ; (1.10)
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what follows from a simple computation. These commutation relations tell that com-
pared to the translation of a modulated function, a modulation of a translated func-
tion yields an additional phase shift. It corresponds to a rotation of the function
values in the complex plane, as jei� j � 1.

Time-frequency shifts are isometries on Lp for all 1 � p � 1, i.e.,

kTxM!f kLp D kf kLp :

The interplay of TF-shifts with the Fourier transform is as follows:

bTxf DM�x Of or FTx DM�xF (1.11)

and
1M!f D T! Of or FM! D T!F : (1.12)

Note that these are actually discrete versions of (1.2) and (1.3). Equation (1.12)
makes clear why modulations are called frequency shifts, because modulations be-
come translations on the Fourier transform side.

In combination, we get the important property

2TxM!f DM�xT! Of D e
�2�ix�!T!M�x Of :

Convolution, Involution and Reflection

1.3.2 Definition The c o n v o l u t i o n of two functions f; g 2 L1.Rd / is the function
f � g defined by

.f � g/.x/´

Z
Rd
f .y/ g.x � y/ dy : (1.13)

It satisfies
kf � gkL1 � kf kL1kgkL1

and
1f � g D Of � Og :

In practise, f � g can be interpreted as f being “smeared” by g and vice versa. This
can be used to smoothen a function by convolving it with a narrow bump function.

1.3.3 Definition The i n v o l u t i o n of a function is defined by

f �.x/´ f .�x/ (1.14)

and the r e f l e c t i o n o p e r a t o r I by

.If /.x/´ f .�x/ : (1.15)

It follows then that cf � D NOf and bIf D I Of :

With this notation one can often write the convolution operation as an inner product

.f � g/.x/ D hf; Txg
�
iL2

whenever both sides are defined. In addition, we have

.f � g/� D g� � f � :
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1.4 The Short-Time Fourier Transform

As described in Section 1.2 the Fourier transform provides information of the overall
frequency behavior of a given signal. This is useful for signals that don’t vary during
the time, e.g., for analyzing the spectrum of a violin tone. However, for dynamic
signals such as music, there is no information about what frequencies occur at what
time when using the Fourier transform. The idea to overcome this is to split a given
signal into short time-intervals on which it can be considered periodic, and look at the
Fourier transforms of those pieces. Since sharp cut-offs introduce discontinuities in
the signal and therefore unwanted noise in its frequency spectrum, a smooth window
function is usually taken instead.

1.4.1 Definition Fix a w i n d o w f u n c t i o n g 2 L2.Rd / n f0g. The s h o r t - t i m e
Fo u r i e r t r a n s f o r m (STFT), also called ( c o n t i n u o u s ) G a b o r t r a n s -
f o r m of a function f 2 L2.Rd / with respect to g is defined as

.Vgf /.x; !/´

Z
Rd
f .t/ g.t � x/ e�2�it �! dt for x; ! 2 Rd : (1.16)

Note that the restriction to L2.Rd / is somehow artificial, as a (pointwise) product
f � g is L1-integrable whenever f 2 Lp.Rd / and g 2 Lq.Rd / as follows by Hölder’s
inequality. But for f; g 2 L2.Rd / the STFT Vgf is uniformly continuous on R2d and
can be written as

.Vgf /.x; !/ D 2f � Tx Ng.!/ (1.17)

D hf;M!TxgiL2 (1.18)

D e�2�ix�!.f �M!g
�/.x/ : (1.19)

By the inner product representation (1.18) the STFT can be extended to a greater
class of functions or distributions where the integral (1.16) is no longer defined.

The STFT as a function in x and ! seems to provide the possibility to obtain in-
formation about the occurrence of arbitrary frequencies ! at arbitrary locations x
as desired. This is done by projecting a signal f onto corresponding time-frequency
shifted versions of a single envelope function g. However, there is a fundamental
observation that destroys this dream: the uncertainty principle, telling that even the
“nicest” function g cannot be well-concentrated in both time and frequency, i.e., es-
sential support suppg � Rd and essential spectrum supp Og � Rd will always occupy
a minimal area on the t i m e - f r e q u e n c y p l a n e or p h a s e s p a c e Rd�Rd . We
will give the following version here, which is sometimes referred to as the Heisenberg–
Pauli–Weyl inequality.

1.4.2 Theorem ( U n c e r t a i n t y p r i n c i p l e ) If f 2 L2.R/ and a; b 2 R are arbi-
trary, then�Z

R
.x � a/2 jf .x/j

2
dx

�1=2 �Z
R
.! � b/2 j Of .!/j

2
d!

�1=2
�

1

4�
kf k

2
L2 : (1.20)

Equality holds if and only if f is a multiple of TaMb'c.x/ D e2�ib.x�a/e��.x�a/
2=c for

some a; b 2 R and c > 0.
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FIGURE 1.1: Two signals and their (short-time) Fourier transforms. Despite the vis-
ible difference between (a) and (b), their Fourier transforms (c) and (d) look similar
(up to a discontinuity in the second signal) and indicate their same frequency content.
However, for (a) the time-frequency behavior is not clear at first sight. STFT (e) of the
first signal incorporates a wide window and yields a high frequency resolution, telling
that the spectrum is time-invariant. STFT (f) uses the same wide window and shows
that the frequencies in the second signal are time-variant, but time-resolution is low
and the frequency lines blend horizontally. Using a narrow window, STFT (h) in-
dicates the time-points where frequencies change, but frequency-resolution becomes
bad, yielding broad frequency bands. For the same narrow window, STFT (g) is
incapable of detecting the low frequencies in the first signal.
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P r o o f . See [Grö01, 2.2].

The standard form of the uncertainty principle involves an f 2 L2.Rd / with
kf kL2 D 1, the minimum over all a 2 R for the first term in (1.20), written as �f x,
and the minimum over all b 2 R for the second term, written as �f !. Using these
standard deviations, the uncertainty principle reads as

�f x �f ! �
1

4�
:

This theorem shows that the STFT has limitations in its time-frequency resolution
capability: Low frequencies can hardly be located with narrow windows, and sim-
ilarly, short pulses remain invisible for wide windows. The choice of the analyzing
window is therefore crucial and leads to the build-up of dedicated window classes for
TF-analysis in general Hilbert spaces.

Just like the Fourier transform, the STFT is another kind of time-frequency repre-
sentation of a signal. This again raises the question of how to reconstruct the signal
from its time-frequency representation. To approach this we need the result of the
orthogonality relations of the STFT as an equivalence to Parseval’s formula (1.7) for
the Fourier transform:

1.4.3 Theorem ( O r t h o g o n a l i t y r e l a t i o n s f o r S T F T ) Let f1; f2; g1; g2 2
L2.Rd /. Then Vgjfj 2 L2.R2d / for j 2 f1; 2g, and

hVg1f1;Vg2f2iL2.R2d / D hf1; f2iL2hg1; g2iL2 :

P r o o f . See [Grö01, 3.2.1].

1.4.4 Corollary If f; g 2 L2.Rd /, then

kVgf kL2.R2d / D kf kL2kgkL2 :

In the case of kgkL2 D 1 we have

kf kL2 D kVgf kL2.R2d / 8f 2 L2.Rd / (1.21)

and therefore the STFT as an isometry from L2.Rd / into L2.R2d /.

Formula (1.21) shows that the STFT, too, preserves the energy of a signal; it corre-
sponds to (1.6) which shows the same property for the Fourier transform. Therefore,
f is completely determined by Vgf and the inversion is given by a vector-valued
integral:

1.4.5 Corollary ( I n v e r s i o n f o r m u l a f o r t h e S T F T ) Be g;  2 L2.Rd / and
hg; i ¤ 0. Then

f D
1

h; giL2

“
R2d

Vgf .x; !/ M!Tx d! dx 8f 2 L2.Rd / : (1.22)

P r o o f . See [Grö01, 3.2.3].
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Formula (1.22) is similar to the inversion of the Fourier transform, with the dif-
ference that the elementary functions e2�ix�! occurring in f .x/ D

R
Of .!/e2�ix�!d!

are not L2-integrable in contrary to the elementary functions M!Tx . As hg; giL2 D
kgk

2
L2 ¤ 0 for all allowed choices for g, one might as well take the same window for

reconstruction that has been originally used in the STFT.

The time-frequency analysis of signals is usually done by three subsequent steps:

1. Analysis: A signal is transformed into a joint time-frequency representation,
like the STFT.

2. Processing: The obtained signal representation is then manipulated in a certain
way, e.g. by restriction to a set where something interesting seems to happen or
where the values are above a given threshold.

3. Synthesis: The processed representation is then inverted to create a new signal
which corresponds to the respectively processed original signal.

A function is completely represented by its STFT, but in a highly redundant way:
Elementary functions are incorporated as infinitesimal TF-shifts of a single window
function. To overcome the uncertainty principle, the analyzing window g and its
Fourier transform Og should be chosen to both decay rapidly, but even if they have
compact support, their TF-shifted versions largely overlap. This fact yields the prob-
lem of high computational effort in practice. Besides that, a computational imple-
mentation can only be obtained by a discretization of both the functions and the
STFT. Therefore, only sampled versions of the STFT are possible and only certain
locations and frequencies are used for analyzing a given signal. The very challenge is
to find the appropriate steps in time and frequency and to obtain good time-frequency
resolution in spite of the uncertainty principle.

A common task in analysis is the approximation or representation of arbitrary
functions with the help of “special” functions of similar structure which are well-
understood and possess easy-to-handle analytical properties. But besides that, there
is the question about how a set of elementary functions has to be structured in a
more general way such that the analysis and synthesis operations are “reasonable”;
in Chapter 2 we want to be more precise on this and introduce the more general
concept of frames.

1.5 The Gaussian Function

We have seen in Theorem 1.4.2 that there exists a certain function that minimizes the
uncertainty principle: The Gaussian function. It is therefore an ideal candidate for
being used as window function in the STFT to obtain best time-frequency resolution.
Besides that minimization property, it is (up to constants) invariant under the Fourier
transform and therefore an eigenfunction of this transform.
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1.5.1 Definition The non-normalized G a u s s i a n f u n c t i o n of width a > 0 is
defined as

'aWR
d
! R; 'a.x/´ e��x

2=a :

Note that x2 D x � x. We abbreviate ' ´ '1.

Some authors define the Gaussian using a complex parameter c > 0 and splitting
into the real and complex part of 1

c
, i.e., 'c.x/ D e��ax

2

e��ibx2 what corresponds to
a Gaussian '1=a multiplied by a chirp function.

Some sources like [Wer97, V.2.6] or [Grö01, 1.5.1] prove the Fourier transform
invariance of the Gaussian by using the fact that initial value problems for linear
common differential equations have unique solutions, but here we want to show a
different approach and restrict to the case of x 2 R.

1.5.2 Theorem The function '.x/ D e��x
2

satisfies y' D ', i.e.,

.F'/.!/ D e��!
2

:

P r o o f . [Zim98] The Fourier transform of '.x/ with x 2 R is given as

y'.!/ D

Z
R
e��x

2

e�2�i!x dx

D

Z
R
e��.xCi!/2e��!

2

dx

D e��!
2

Z
R
e��.xCi!/2 dx : (1.23)

Writing h.x; !/ ´ e��.xCi!/2 , we have @h
@!
.x; !/ D �2� i.x C i!/e��.xCi!/2 which

is uniformly integrable with respect to x over bounded ranges of !. Therefore, we
may switch the order of differentiation and integration in the differentiation of the
parameter integral H.!/´

R
R h.x; !/ dx and get

dH

d!
.!/ D

Z
R

@h

@!
.x; !/ dx

D

Z
R
�2� i.x C i!/e��.xCi!/2 dx

D

h
ie��.xCi!/2

i1
xD�1

D 0 8! 2 R :

This shows that H.!/ is constant and thus H.!/ � H.0/. Its value is given by

H.0/2 D

Z
R
e��x

2

dx

Z
R
e��y

2

dy

D

“
R�R

e��.x
2Cy2/ dx dy
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D

“
RC�Œ0;2��

e��r
2

r dr d�

D

Z 1
0

2�r e��r
2

dr

D

h
�e��r

2
i1
rD0
D 1 :

AsH.0/ � 0 since h.x; 0/ � 0, we thus haveH.0/ D 1 and (1.23) yields y'.!/ D e��!
2

as asserted.

1.6 Tools from Linear Algebra

Matrix Norms and Inner Products

For numerical calculations we will need an inner product of matrices and a matrix
norm. The Frobenius norm is quickly to compute, as it incorporates matrices as
vectors.

1.6.1 Definition The F r o b e n i u s n o r m of A 2 Cm�n is defined as

kAkF ´

p
m�1X
iD0

n�1X
jD0

jaij j
2
:

It can be expressed as

kAkF D
p

tr.AA�/ D
p

tr.A�A/ ;

where trB is the t r a c e of B 2 Ck�l given as the sum of its diagonal entries, i.e.,
trB ´

Pminfk;lg�1
iD0 bi i .

Observe that this norm is the same as the l2-norm of the matrix if it is seen as an
mn-dimensional vector. One can show that jjjAjjj � kAkF. The Frobenius norm is not
induced by a vector norm, but by the inner product

hA;BiF ´

m�1X
iD0

n�1X
jD0

aijbij D tr.AB�/ :

Singular Value Decomposition and Pseudoinverse

The singular value decomposition (SVD) and the pseudoinverse of a matrix are im-
portant concepts in linear algebra which will reappear in the theory of frames in
Chapter 2.

1.6.2 Theorem Be A 2 Cm�n with rank r � 1. Then there exist unitary matrices
U 2 Cm�m, V 2 Cn�n, a matrix † 2 Cm�n and unique values �1 � �2 � � � � � �r > 0
such that

† D

�
diag.�1; : : : ; �r/ 0r�.n�r/

0.m�r/�r 0.m�r/�.n�r/

�
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with 0k�l ´ 0 2 Ck�l and
A D U†V � : (1.24)

P r o o f . See [Chr03, 1.5.4].

Formula (1.24) is called the s i n g u l a r v a l u e d e c o m p o s i t i o n (SVD) of the
matrix A, and the numbers �1; : : : ; �r are the s i n g u l a r v a l u e s for A. They are
the square roots of the positive eigenvalues for A�A. The involved unitary matrices
U and V are not necessarily unique.

1.6.3 Definition For A 2 Cm�n with an SVD as in Theorem 1.6.2, the p s e u d o i n -
v e r s e or M o o r e – P e n r o s e i n v e r s e of A is given by

A�´ V †�U � 2 Cn�m

where

†�´

�
diag.��11 ; : : : ; ��1r / 0r�.m�r/

0.n�r/�r 0.n�r/�.m�r/

�
2 Cn�m :

If A is invertible, then A� D A�1 and †� D †�1. The importance of the pseudoin-
verse lies in the solution of an important minimization problem:

1.6.4 Theorem Let A 2 Cm�n. For y 2 ranA, the equation Ax D y has a unique
solution of minimal norm, namely x D A�y.

P r o o f . See [Chr03, 1.5.2].

1.7 Tensor Products

As we’ll look at tensor products of Hilbert spaces later, we repeat a few facts from
multilinear algebra.

1.7.1 Definition For finitely many vector spaces Vi , i 2 I , and a vector space W , all
over the field K, a mapping f W

Q
i2I Vi ! W is called (K - ) m u l t i l i n e a r, if f

is (K-)linear in each component Vi , i 2 I . The space of all multilinear functions is
MultK.Vi ; i 2 I IW /, and we write Mult.Vi ; i 2 I / ´ MultK.Vi ; i 2 I IK/ for the
multilinear forms on

Q
i2I Vi . The t e n s o r p r o d u c t of Vi , i 2 I , is now defined

as
N

i2I Vi ´Mult.Vi ; i 2 I /�.

If we choose I D f1; : : : ; ng for simplicity and f 2 Mult.V1; : : : ; Vn/, i.e., a multi-
linear form f WV1 � � � � � Vn ! K, the universal multilinear mapping

� WV1 � � � � � Vn ! V1 ˝ � � � ˝ Vn

is defined by
�.x1; : : : ; xn/.f /´ f .x1; : : : ; xn/ ;

and we abbreviate x1˝� � �˝xn´ �.x1; : : : ; xn/. In short, we define linear functionals
of multilinear forms by the multilinear forms themselves. Note that tensor products
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are associative and Abelian. The universal property of the tensor product is that any
multilinear function f W

Q
i2I Vi ! W is uniquely determined by a linear mapping

F W
N

i2I Vi ! W such that f D F B � , see e.g. [SW01, 6.A.1].
V1˝� � �˝Vn is created by the s e p a r a b l e tensors x1˝� � �˝xn for xi 2 Vi . Every

tensor is a sum of separable tensors due to

a.x1 ˝ � � � ˝ xi ˝ � � � ˝ xn/ D x1 ˝ � � � ˝ axi ˝ � � � ˝ xn ;

and especially

x1˝� � �˝ .xi Cx
0
i/˝� � �˝xn D .x1˝� � �˝xi ˝� � �˝xn/C .x1˝� � �˝x

0
i ˝� � �˝xn/ :

We notice that not every tensor x 2 V1 ˝ � � � ˝ Vn is separable in general, i.e., we
generally have x ¤ x1 ˝ � � � ˝ xn for any xi 2 Vi , because e.g.

x ˝ y C x0 ˝ y 0 ¤ .x C x0/˝ .y C y 0/ D x ˝ y C x ˝ y 0 C x0 ˝ y C x0 ˝ y 0

for x; x0 2 V and y; y 0 2 W .

1.7.2 Theorem Let Vi , i 2 I , be vector spaces over K with bases v.i/ri , ri 2 Ri , then

˝
i2I
v.i/ri ; .ri/i2I 2

Y
i2I

Ri ;

is a basis of the tensor product
N

i2I Vi .

P r o o f . See [SW01, 6.A.2].

1.7.3 Corollary If the vector spaces Vi , i 2 I , are finite-dimensional, then
N

i2I Vi is
finite-dimensional as well, and dim

N
i2I Vi D

Q
i2I dimVi .

Compare that in contrary dim
Q
i2I Vi D

P
i2I dimVi . So if fv1; : : : ; vmg is a basis

for V and fw1; : : : ; wng a basis for W , then fvi ˝ wj gi;j for i 2 f1; : : : ; mg and j 2
f1; : : : ; ng is a basis of mn elements for V ˝W .

A bilinear form ˆWV �W ! K is simply an element of .V ˝W /�, what is isomor-
phic to V �˝W � if both spaces are finite-dimensional, and soˆ can be called a tensor
as well. To be able to identify a sesquilinear formˆWV �W ! C as a tensor, we have
to replace W by its a n t i v e c t o r s p a c e W , where the scalar multiplication is
given as .a; x/ 7! ax. Particularly, a sesquilinear form on V is a tensor in V � ˝ xV �.
A scalar product on the vector space V over K is a m e t r i c a l t e n s o r.

For finitely many vector spaces Vi andWi overK and bilinear formsˆi WVi �Wi !
K, i 2 I , the mapping O

i2I

ˆi W
O
i2I

.Vi ˝Wi/ �! K

is a linear form. Thus, the bilinear mapping

ˆW
�O
i2I

Vi

�
�

�O
i2I

Wi

�
�! K with

�
˝
i2I
xi ; ˝

i2I
yi
�
7�!

Y
i2I

ˆi.xi ; yi/
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is well defined and identified with
N

i2I ˆi . In this sense, a family of sesquilinear
forms ˆi WVi �Wi ! C defines a sesquilinear mapping

N
i2I ˆi . Particularly, scalar

products ˆi WVi � Vi ! K yield a scalar product
N

i2I ˆi , and˝
i2I
xi
 DY

i2I

kxik ; xi 2 Vi ; i 2 I :

1.7.4 Theorem If v.i/ri , ri 2 Ri , are Hilbert bases (complete orthonormal systems) of
Vi over K, i 2 I , then their tensor product

˝
i2I
v.i/ri ; .ri/i2I 2

Y
i2I

Ri ;

is a Hilbert basis of
N

i2I Vi .

P r o o f . [SW01, 6.A.15] We restrict to the case V ˝W and have to show that all sep-
arable tensors x˝y 2 V ˝W are in the closed linear span of the linear combinations
of
˚
v
.1/
r1 ˝ v

.2/
r2

	
r1;r2

. This follows from the estimate

kx ˝ x0 � y ˝ y 0k D kx ˝ x0 � y ˝ x0 C y ˝ x0 � y ˝ y 0k

D k.x � y/˝ x0 C y ˝ .x0 � y 0/k

� k.x � y/˝ x0k C ky ˝ .x0 � y 0/k

D kx � ykkx0k C kykkx0 � y 0k :

A tensor product of Hilbert spaces also carries a scalar product due to the above
considerations, but it is only a Hilbert space itself if all factors except for at most one
are finite-dimensional. So, the completion of

N
i2I Hi for Hilbert spaces Hi , i 2 I ,

is usually of interest, and the complete Hilbert space tensor product is denoted by

cN
i2I

Hi :

Theorem 1.7.4 reveals a Hilbert basis for the complete tensor product if Hilbert bases
for its factors are given. If Hi , i 2 I , are separable Hilbert spaces, then cNi2IHi is
separable as well.



Chapter 2

Frames in Hilbert Spaces

2.1 From Bases to Frames

A classical problem in analysis is to try to split a signal f into a convergent series
of elementary functions gi with equal structure. These should have well-known and
easy-to-handle analytical properties and should simplify the understanding of the
signal f . One way to express f as a linear combination

P
i2I cigi is using the concept

of bases.

2.1.1 Definition Two sequences ffigi2I in a Banach space X and fgigi2I in the dual
X� are b i o r t h o g o n a l if

gj .fi/ D ıi;j ´

(
1 i D j

0 i ¤ j :

The notion of a (Schauder) basis for X allows to have unique expansions of the
form

f D
X
i2I

ci.f /gi 8f 2 X

where fcigi2I are linear functionals in X� and biorthogonality is given by cj .gi/ D
ıi;j . For Hilbert spaces, biorthogonality can be expressed by the respective inner
product due to Riesz’ Representation Theorem. In the case of an orthonormal ba-
sis feigi2I in a separable Hilbert space H , the coefficients fci.f /gi2I are given by
fhf; eiiH gi2I and the expansion takes the form [Wer97, V.4.9]

f D
X
i2I

hf; eiiH ei 8f 2H :

This shows that an orthonormal basis is biorthogonal to itself. Given an arbitrary ba-
sis feigi2I for H , one can show [Chr03, 3.3.2] that there exists a unique biorthogonal
basis fgigi2I in H for which

f D
X
i2I

hf; giiH ei 8f 2H : (2.1)

Besides the question of how to actually find that biorthogonal sequence, it is not
really convenient in practise to use a basis as set of expansion elements: Although
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an orthonormal basis is biorthogonal to itself, the Gram-Schmidt orthogonalization
routine is numerically fairly unstable. Orthogonality and the basis property alone
are already rather restricting. In addition, a perturbation of single basis elements
immediately results in a perturbation of the sum. And in the case of the loss of a single
basis element, one even cannot span the whole space anymore with the remaining
elements.

The sought generalization of bases leads to the notion of frames. We explore their
structure by first considering the analysis and synthesis operation that we already
came across in Section 1.4.

2.1.2 Definition Given a sequence fgigi2I in H , the a n a l y s i s o p e r a t o r or c o -
e f f i c i e n t o p e r a t o r C is given by

Cf ´ fhf; giiH gi2I

and the s y n t h e s i s o p e r a t o r or r e c o n s t r u c t i o n o p e r a t o r D is defined
for a finite sequence c D fcigi2I as

Dc´
X
i2I

cigi 2H :

The f r a m e o p e r a t o r S is defined as

Sf ´ DCf D
X
i2I

hf; giiH gi : (2.2)

In this general setting of the analysis operation, we don’t have any structural know-
ledge about the coefficient sequence fhf; giiH gi2I . For a reasonable and stable recon-
struction of f , we need the analysis operation to be continuous. Also, we ask about
conditions for convergence of the sum

P
i2I cigi if the sequence fcigi2I is not finite.

2.1.3 Definition A sequence fgigi2I in H is called a B e s s e l s e q u e n c e if there
exists a constant B > 0 such that

kCf k
2
2 D

X
i2I

jhf; giiH j
2
� Bkf k

2
H 8f 2H : (2.3)

Every number B that satisfies (2.3) is called a B e s s e l b o u n d for fgigi2I .

Technically, it would be enough to state that fhf; giiH g 2 l2.I /, but the knowledge
of a bounding constant B is stronger than just knowing that the sum does converge.
It is enough to have the Bessel property on a dense subset of H [Chr03, 3.2.6].

2.1.4 Theorem Let fgigi2I be a sequence in H . Then fgigi2I is a Bessel sequence with
Bessel bound B if and only if

DW fcigi2I !
X
i2I

cigi

is a well-defined bounded operator l2.I /!H with jjjDjjj �
p
B.
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P r o o f . See [Chr03, 3.2.3].

As a consequence, the series
P
i2I cigi converges unconditionally for all fcigi2I 2

l2.I /, and so does the series defining the frame operator S for all f 2H .
We have an interesting relation between the analysis and synthesis operation: The

operators C and D are adjoint to each other, i.e., C D D�, and for Bessel sequences
the analysis operator becomes the bounded linear operator

D�WH ! l2.I /; D�f D fhf; giiH gi2I :

The frame operator is then the self-adjoint operator S D C �C D DD�. This justifies
calling the synthesis operator D the p r e - f r a m e o p e r a t o r.

However, all this does not yet tell us how to obtain the expansion coefficients
fcigi2I in the expansion f D

P
i2I cigi . As we can see from (2.2), we’d need the

frame operator to be invertible. For this, we need the analysis operator to be positive
and thus injective—that’s where we arrive at the definition of a frame.

2.1.5 Definition A sequence fgigi2I in a (separable) Hilbert space H is called a
f r a m e if there exist positive constants A;B > 0 such that

Akf k
2
H �

X
i2I

jhf; giiH j
2
� Bkf k

2
H 8f 2H : (2.4)

Any constants A and B satisfying (2.4) are called f r a m e b o u n d s. A frame is
called t i g h t if A D B.

The frame inequality (2.4) is some kind of “approximate Plancherel formula”. As
kD�f k

2
2 D

P
i2I jhf; giiH j

2, the left hand side of (2.4) shows thatD� is positive with
jjjD�jjj �

p
A. Observe that an orthonormal basis is a tight frame with A D B D 1

and that a frame is a Bessel sequence. A frame is c o m p l e t e in H , meaning that
spanfgigi2I DH . For frames, the analysis operator has closed range in l2.I /.

Because we have

hSf; f iH D
DX
i2I

hf; giiH gi ; f
E
H
D

X
i2I

jhf; giiH j
2
;

a reformulation of (2.4) yields

Akf k
2
H � hSf; f iH � Bkf k

2
H ;

showing that S is bounded positive and thus invertible with inverse S�1. Conse-
quently, every f 2H has an expansion of the form

f D S�1Sf D
X
i2I

hf; giiH S
�1gi (2.5)

and
f D SS�1f D

X
i2I

hS�1f; giiH gi D
X
i2I

hf; S�1giiH gi ; (2.6)
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where we used the self-adjointness of S and therefore of S�1. Writing T � U when-
ever hTf; f iH � hUf; f iH for all f 2H , we get that

A IdH � S � B IdH : (2.7)

Multiplying (2.7) with S�1 shows that

1

B
IdH � S

�1
�
1

A
IdH ;

yielding that fS�1gigi2I is again a frame with lower frame bound 1=B and upper
frame bound 1=A.

Thus, with (2.5) and (2.6) we already have found a way to obtain a biorthogonal
sequence for reconstruction. If we think of (2.1), we know at least one d u a l f r a m e
f Qgigi2I for a given frame fgigi2I such that the non-orthogonal expansion

f D
X
i2I

hf; gii Qgi D
X
i2I

hf; Qgiigi

holds for all f 2H . The frame fS�1gigi2I we obtained above is called the c a n o n -
i c a l d u a l f r a m e to fgigi2I . Among all possible dual frames, this is the one where
the expansion coefficients have minimal l2-norm:

2.1.6 Proposition Be fgigi2I a frame for H and f 2H . Let a D
˚
hf; S�1giiH

	
i2I

be
the canonical frame expansion coefficients such that f D

P
i2I aigi . If f has another

representation f D
P
i2I cigi for some coefficients c 2 l2.I /, then

kck
2
2 D kak

2
2 C kc � ak

2
2 :

P r o o f . See [Grö01, 5.1.4] or [Chr03, 1.1.5].

So, in contrary to a basis, the expansion coefficients for a frame are not unique in
general. The minimality in the l2-norm is not always the ideal property for finding
coefficients, there might be other criteria in certain cases.

If we consider Theorem 1.6.4, we obtain an explicit way to compute the canonical
frame coefficients by using the pseudoinverse of the pre-frame operator:

2.1.7 Theorem Let fgigi2I be a frame for H with synthesis operator D and frame
operator S . Then

D�f D
˚
hf; S�1giiH

	
i2I

: (2.8)

In operator terms, (2.8) says that

D�
D D�S�1 D D�.DD�/�1 ;

what is valid more generally for the pseudoinverse of any surjective operator D. This
also emphasizes the difference between D� and the analysis operator D�: For recon-
struction, one needs to compute either S�1 or directly D�.

Similar to Bessel sequences, the explicit knowledge of frame bounds A and B again
provides some kind of “quality criteria”. The lowest upper frame bound and highest
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lower frame bound are called the o p t i m a l f r a m e b o u n d s. One gets Bopt D

supkf kD1hSf; f i D jjjS jjj and similarly Aopt D 1=jjjS�1jjj. Since S is a self-adjoint,
positive and bounded linear operator, these values are equal to its largest and smallest
eigenvalues. The ratio between the largest and smallest eigenvalue of an operator or
matrix is called its c o n d i t i o n n u m b e r. Given a frame, the condition number
therefore equals Bopt=Aopt D jjjS jjjjjjS

�1jjj. The condition number is a measure for the
speed of convergence of numerical algorithms. If only bad estimates for the optimal
frame bounds are known and B is much larger than A, one gets a high condition
number, resulting in a slow numerical convergence. Therefore, some of the various
known acceleration methods from numerical analysis are applied in practice to speed
up convergence.

The importance of tight frames lies within the fact that the frame operator is then
just a multiple of the identity, i.e., S D A IdH , what follows from (2.7). The same is
valid for its inverse S�1, and so the canonical dual frame is just

˚
1
A
gi
	
i2I

, yielding that
the dual frames equal the original frame up to a constant, avoiding the complicated
structure of the frame operator as well as its inversion. Another important thing is
that in general the duals might not be of the same structure as the original frame due
to the application of S�1; e.g., a dual of a frame in L2 might not be in L2 anymore.
Tight frames therefore ensure that the duals keep this structure.

However, for arbitrary frames there is a way of getting a tight frame: Because both
S and S�1 are self-adjoint and positive, their square-roots S1=2 and S�1=2 exist and
are again self-adjoint and positive. As S�1=2SS�1=2 D IdH , we get that

f D S�1=2S.S�1=2f / D
X
i2I

hf; S�1=2giiH S
�1=2gi ;

yielding that fS�1=2gigi2I is the c a n o n i c a l t i g h t f r a m e with frame bounds
A D B D 1. As the elements aren’t normalized in general, these need not be an
orthonormal basis.

The question when the expansion coefficients are uniquely determined has its own
interest. This is the case of a Riesz basis where the synthesis operator is bounded
invertible:

2.1.8 Definition A family fgigi2I in a Hilbert space H is a R i e s z b a s i s for H if
there exist constants A;B > 0 such that the inequalities

Akck
2
2 � kDck

2
H � Bkck

2
2

or, in more detail,

A
X
i2I

jci j
2
�

X
i2I

cigi

2
H
� B

X
i2I

jci j
2

hold for all finite sequences c D fcigi2I .

There are some equivalent conditions for a frame to be a Riesz basis. We give a list
in the following statement.

2.1.9 Proposition Suppose fgigi2I is a frame for H , then the following conditions are
equivalent:
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(a) fgigi2I is a Riesz basis for H .

(b) fgigi2I is a basis for H .

(c) The operators C and D are bijections.

(d) The coefficients c 2 l2.I / in the series expansion (2.6) are unique.

(e) The analysis operator C has closed and dense range in l2.I /.

(f) fgigi2I is the image of an orthonormal basis feigi2I for H under a bounded bijective
operator U WH !H , i.e., gi D Uei 8i 2 I .

(g) fgigi2I is an e x a c t f r a m e for H , i.e., it is no longer a frame if a single element
is removed.

P r o o f . See [Grö01, 5.1.5] and [Chr03, 6.1.1].

It follows that the unique dual Riesz basis is given by fS�1gigi2I . Some sources
use condition (f) of Proposition 2.1.9 as an alternative definition for Riesz bases.

We already mentioned that a frame is complete in H . If we compare this to the
fact that a frame could be inexact, i.e. it could still be a complete sequence although
elements could be removed, this also means that there might be more elements in a
frame than needed to span all of H . In this case a sequence is said to be overcomplete.
In some sense we expect the elements to be dependent on each other, in analogy to
linear dependence. In the question about the uniqueness of the expansion coefficients,
the need for fgigi2I to be independent in some sense raises the question about the
analogy to linear (in-)dependence of elements in infinite-dimensional Hilbert spaces.
The following concepts of independence exist in infinite-dimensional Banach spaces:

2.1.10 Definition Be fgig1iD1 a sequence in X . One says that

(a) fgig1iD1 is l i n e a r l y i n d e p e n d e n t if every finite subsequence of fgig1iD1 is
linearly independent (in the usual way).

(b) If whenever 9fcig1iD1
P1
iD1 cigi D 0 implies that ci D 0 8i 2 N, then fgigi2I is

called ! - i n d e p e n d e n t.

(c) fgig1iD1 is m i n i m a l if gj … spanfgigi¤j 8j 2 N, i.e., if every single element is
not in the span of the others.

The relation between these different flavors of independence is that minimality im-
plies !-independence, what in turn implies linear independence [Chr03, 3.1.3]. As
a final result, we state that fgigi2I being a Riesz basis is equivalent to fgigi2I being
!-independent [Chr03, 6.1.1]. So, linear independence alone is not enough.

Considering the situation in the finite-dimensional setting, one could expect that
whenever a sequence fgigi2I is complete in H , this would imply that all f 2 H
have an expansion f D

P
i2I cigi for some coefficients fcigi2I . However, for an

infinite-dimensional Hilbert space this is generally not true. A counter-example is the
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sequence fei C eiC1gi2I built from an orthonormal basis feigi2I for H , cf. [Chr03,
5.4.6].

Luckily, all this is no concern for the finite-dimensional discrete case of applied
signal analysis.

2.2 Gabor Frames in L2.Rd/

If we go back to Section 1.4 and remember formula (1.18), the STFT analyzes a func-
tion f 2 L2.Rd / into coefficients hf;M!TxgiL2 using modulations and translations
of a single window function g 2 L2.Rd /nf0g. One problem we noticed was that these
TF-shifts are infinitesimal and overlap largely, making the STFT a highly redundant
time-frequency representation. The idea is to replace this infinitesimality by discrete
choices of time-positions x and frequencies ! such that this redundancy is decreased
while leaving enough information in the coefficients about the time-frequency behav-
ior of f . This is the very essence of Gabor analysis: It is sought to expand functions
in L2.Rd / into an absolutely convergent series of modulations and translations of a
window function g, i.e., we are looking for necessary and sufficient conditions for

fgx;!g.x;!/2ƒ´ fM!Txgg.x;!/2ƒ

to be a frame for a certain discrete subsetƒ � Rd�Rd . The question rises about how
this sampling set ƒ should be structured. We will notice that it is very convenient to
have this set closed under the addition operation, urging ƒ to be a subgroup of the
time-frequency plane, i.e.,ƒ E Rd�Rd . Dennis Gabor1 suggested 1946 in his Theory
of Communication [Gab46] to use fixed step-sizes ˛; ˇ > 0 for time and frequency and
use the set f˛kgk2Zd for the time-positions and fˇngn2Zd for the frequencies, yielding
the functions

gk;n.x/´MˇnT˛kg.x/ D e
2�iˇn�xg.x � ˛k/

as analyzing elements. This is the approach that is usually presented in the literature,
although there is also a more general group-theoretical setting possible whereƒ is an
arbitrary (discrete) subgroup. This subgroup is also called a time-frequency lattice,
although it doesn’t have to be of such a “rectangular” shape in general.

2.2.1 Definition A l a t t i c e ƒ � Rd is a (discrete) subgroup of Rd of the form
ƒ D AZd , where A is an invertible d �d -matrix over R that is not necessarily unique.
Lattices in R2d can be described as

ƒ D
˚
.x; y/ 2 R2d

ˇ̌
.x; y/ D .Ak C Bl; Ck CDl/; .k; l/ 2 Z2d

	
with A;B;C;D 2 Cd�d and

A D

�
A B

C D

�
:

A latticeƒ D ˛Zd �ˇZd E R2d for ˛; ˇ > 0 is called a s e p a r a b l e or p r o d u c t
l a t t i c e or a g r i d.

1Actually Dénes Gábor
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In the following, our lattice will be of the separable type for fixed lattice parameters
˛; ˇ > 0. We will discuss other lattices in Chapter 3.

2.2.2 Definition For a non-zero window function g 2 L2.Rd / and lattice parameters
˛; ˇ > 0, the set of time-frequency shifts

G .g; ˛; ˇ/´ fMˇnT˛kggk;n2Zd

is called a G a b o r s y s t e m. If G .g; ˛; ˇ/ is a frame for L2.Rd /, it is called a G a -
b o r f r a m e or We y l – H e i s e n b e r g f r a m e. The associated frame operator is
the G a b o r f r a m e o p e r a t o r and takes the form

Sf D
XX
k;n2Zd

hf;MˇnT˛kgiL2MˇnT˛kg (2.9)

D

XX
k;n2Zd

Vgf .˛k; ˇn/MˇnT˛kg

for all f 2 L2.Rd /. The window g is also called the G a b o r a t o m.

If we remember the commutation relations (1.10) that modulation and translation
do not commute, we luckily get as a result to (2.9) that the order of translation and
modulation is not important since the phase factor in TxM! D e

�2�ix�!M!Tx occurs
both linearly and conjugate-linearly in (2.9) because the inner product is sesquilinear,
and the factors thus cancel. So, the frame expansion could as well be written as

Sf D
XX
k;n2Zd

hf; T˛kMˇngiL2 T˛kMˇng (2.10)

and G .g; ˛; ˇ/ D fT˛kMˇnggk;n2Zd . This justifies using a joint notation for TF-shifts,
what we will be doing later.

Now we ask how a dual frame could look like such that we can expand f 2

L2.Rd / with respect to that Gabor frame. In the previous section we showed that
fS�1gk;ngk;n2Zd yields the canonical dual frame. So we’d have to compute S�1 and
apply it to all modulated and translated versions of the Gabor atom g. Luckily, there
is an observation that reduces this computational cost: The frame operator com-
mutes with TF-shifts, what follows from the following computation. For arbitrary
fixed indices l; m 2 Zd , we get�
MˇmT˛l

��1
SMˇmT˛lf D

XX
k;n2Zd

˝
MˇmT˛lf;MˇnT˛kg

˛
L2
�
MˇmT˛l

��1
MˇnT˛kg

D

XX
k;n2Zd

˝
f;Mˇ.n�m/T˛.k�l/g

˛
L2Mˇ.n�m/T˛.k�l/g (2.11)

after cancelling the occurring commutation factors e˙2�i˛ˇl�.n�m/. Comparing (2.11)
with (2.9) and considering k � l and n �m as new indices, we finally get�

MˇmT˛l

��1
SMˇmT˛lf D Sf
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what corresponds to
SMˇmT˛l DMˇmT˛lS ; (2.12)

the commutation of S with the time-frequency shifts determined byƒ D ˛Zd �ˇZd .
Consequently, also S�1 and S�1=2 commute with time-frequency shifts, what can

be seen by applying them to the left and right of (2.12). We get very important benefits
from that fact, explaining why the case of Gabor frames is so interesting.

2.2.3 Theorem If the given Gabor system G .g; ˛; ˇ/ is a frame for L2.Rd /, then all of
the following hold:

(a) There exists a d u a l w i n d o w  2 L2.Rd / such that the dual frame is given by
the Gabor frame G .; ˛; ˇ/.

(b) Every f 2 L2.Rd / has an expansion of the form

f D DCgf D
XX
k;n2Zd

hf;MˇnT˛kgiL2MˇnT˛k (2.13)

D DgCf D
XX
k;n2Zd

hf;MˇnT˛kiL2MˇnT˛kg

with unconditional convergence in L2.Rd /.

(c) The canonical dual frame is given by the Gabor frame fMˇnT˛kS
�1ggk;n2Zd built

from the c a n o n i c a l d u a l w i n d o w ı´ S�1g.

(d) The canonical tight frame is given by the Gabor frame fMˇnT˛kS
�1=2ggk;n2Zd built

from the c a n o n i c a l t i g h t w i n d o w S�1=2g.

(e) The inverse frame operator S�1 is just the frame operator for the Gabor system
G .ı; ˛; ˇ/ and

S�1f D
XX
k;n2Zd

˝
f;MˇnT˛k

ı
˛
L2 MˇnT˛k

ı : (2.14)

Notice the affinity between (2.13) and the inversion of the STFT (1.22).
So, instead of calculating the “multi-infinite” family fS�1MˇnT˛kggk;n2Zd , it is

enough to compute S�1g once and use the same set of TF-shifts to obtain the desired
frame expansion.

And here’s the reason why one wants to have a subgroupƒ E Rd �Rd as sampling
subset of the TF-plane: The series (2.11) could not be seen as the expansion of the
frame operator if the TF-shifts Mˇ.n�m/T˛.k�l/g were not part of the Gabor frame.
So, as soon as ƒ is a subgroup and G .g;ƒ/´ fM!Txgg.x;!/2ƒ is a frame, the frame
operator commutes with the corresponding TF-shifts and the dual frame is built from
a single dual window using the same set of TF-shifts.

However, G .g;ƒ/ might still be a frame for an arbitrary countable subset ƒ �
Rd � Rd and there still is a dual frame according to the general theory, but both



24 Chapter 2. Frames in Hilbert Spaces

the elements and the frame operator lack structure, and the inversion of the frame
operator is more difficult and costlier than in (2.14).

Thinking of an orthonormal basis, it is a tight frame with bounds A D B D 1

and condition number B=A D 1, granting it a very stable expansion property. A
non-tight frame might have larger condition numbers and therefore not such a good
stability of the frame expansion, but still provide some stability by its overcomplete-
ness. However, one could try to reduce the computational effort by removing some
of the elements in G .g;ƒ/ if the frame stays complete, but there is a good reason not
to try this: By removing some TF-shifts, the subgroup structure of ƒ will be lost, the
Gabor frame operator no longer commutes with TF-shifts and the dual frame will be
more difficult to find.

So far we only know that the canonical dual Gabor frame is a dual frame built
from a single window, but have no idea yet whether there are other dual frames that
have the Gabor structure. Indeed, one can show [Grö01, 7.6.1] that all dual windows
 are within an affine subspace of L2.Rd /, namely  2 ı CK ?, where K is the
closed linear span of G

�
g; 1

ˇ
; 1
˛

�
and therefore

K ?
D
˚
h 2 L2.Rd / W hh;Mn=˛Tk=ˇgiL2 D 0 8k; n 2 Zd

	
: (2.15)

Hence we have  D ı C h for a certain h 2 K ?, and as ı 2 K , the canonical
dual window possesses the smallest L2-norm among all dual windows and is most
similar to the original window g. However, there might be reasons not to choose the
canonical dual window, but one of the others in ıCK ?, if, for example, one wants
the dual window to have a smaller essential support, or if the window should be as
smooth as possible. The variety of dual windows is determined by dim K ?.

Using a separable lattice with parameters ˛; ˇ > 0 has some advantages over us-
ing general discrete subgroups. First, the Gabor frame operator possesses a special
structure and has some numerically efficient representations, involving relations to
the used lattice parameters. The so-called adjoint lattice ƒı D 1

ˇ
Zd � 1

˛
Zd occur-

ring in (2.15) plays an important role for this, and some results will be mentioned in
Section 3.3. Second, some conditions for a Gabor system to be a frame or not also
rely on the lattice parameters. Finally, for certain Gabor atoms g there are known
conditions on ˛ and ˇ to make G .g; ˛; ˇ/ a frame.

2.2.4 Theorem Be g 2 L2.Rd / n f0g and ˛; ˇ > 0. If G .g; ˛; ˇ/ is a frame, then all of
the following hold:

(a) ˛ˇ � 1.

(b) G .g; ˛; ˇ/ is a Riesz basis if and only if ˛ˇ D 1.

P r o o f . See [Grö01, 7.5.1+2] or [Chr03, 8.3.1].

So whenever ˛ˇ > 1 one can for no window manage to build a Gabor frame.
Unfortunately, having ˛ˇ � 1 is still not sufficient. Sufficient conditions are presented
e.g. in [Chr03, 8.4].

However, for certain classes of windows things get easier. A special result is known
for the Gaussian function that we introduced in Section 1.5.
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2.2.5 Theorem Be '.x/ ´ 2d=4e��x
2

the normalized Gaussian such that k'kL2 D 1.
Then G .'; ˛; ˇ/ is a frame for L2.Rd / if and only if ˛ˇ < 1.

It is customary in signal analysis to call the case
˛ˇ < 1 oversampling,
˛ˇ D 1 critical sampling, and
˛ˇ > 1 undersampling.

In the case of the Gaussian window, oversampling guarantees an excellent time-
frequency localization. But for Gabor frame theory in Hilbert spaces it is quite deli-
cate to find appropriate windows for given ˛ˇ � 1. One of the reasons is due to the
uncertainty principle 1.4.2, disallowing functions to have small essential support on
the time-frequency plane. The version commonly used in time-frequency analysis is
the Balian–Low Theorem, here presented in a negated form; we again write Xf for
the function x 7! xf .x/.

2.2.6 Theorem ( B a l i a n – L o w ) Be g 2 L2.Rd / a non-zero window and ˛; ˇ > 0

with ˛ˇ D 1. If
kXgkL2kX OgkL2 <1 ;

then G .g; ˛; ˇ/ cannot constitute a frame or a Riesz basis.

Therefore, dedicated window classes are introduced for the purpose of Gabor ana-
lysis in this general setting, with conditions that combine applicable local and global
properties of window functions. Among these window classes are the Wiener space
([Grö01, 6.1], [Chr03, 8.5]) or the modulation spaces ([FZ98], [Grö01, 11+12]).

In the signal processing literature, especially when it comes to image processing,
there’s sometimes the term of “Gabor functions” used synonymously for modulated
Gaussian functions, because that was the window Gabor originally used in [Gab46].
But Gabor analysis is in no way restricted to using the Gaussian function as analyzing
prototype, although it has some advantages that we already mentioned. Another
justification is that modulated Gaussians can be used to describe biological vision,
see the references in Section 5.6.

2.3 Gabor Frames in l2.Z/

If we think of signals such as sound, we think of them as continuous waves. Indeed,
the technology for signal processing originally was of the continuous-time analog
type before digital computers came into our everyday life. Nowadays digital signal
processing is used almost exclusively, forcing us to change our function model to a
time-discrete one. In both the time-continuous and time-discrete case, it makes sense
to consider functions of finite energy only and to equip them with an inner product.
It is therefore natural to switch from L2.R/ to l2.Z/, where functions are reduced to
samples of their function values, i.e., we could have f .j / ´ F. j̨ / for F 2 L2.R/
and

f WZ! C; kf k22 D
1X

jD�1

jf .j /j
2
<1 :
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But in general the sequence elements don’t have to be samples of a continuous func-
tion, i.e. discrete signals f 2 l2.Z/ as such are simply not defined between the integer
positions.

Besides the consideration of certain conditions in the case of sampling, cf. [Grö01,
10.2], Gabor frame theory in l2.Z/ is very similar to that in L2.R/ and will therefore
only be discussed briefly in this section. The main differences concern the time shifts
and frequency shifts. Time shifts are given as multiples of integer translates, because
one cannot shift by “less than one position” or by fractions of positions, i.e.,

Tkf .j / D f .j � k/ (2.16)

for k 2 Z and f 2 l2.Z/. A shift parameter ˛ > 0 for Gabor frames in l2.Z/ can
only be given as ˛ D N 2 N.

Almost the same is valid for the modulations, where the modulation parameter
ˇ > 0 is given as 1=L for fixed L 2 N and therefore

Ml=Lf .j / D e
2�ijl=Lf .j / (2.17)

for l 2 Z. It turns out that the modulations are now periodic with period L, i.e.

M lCnL
L
DM l

L
Cn DM l

L
8n 2 Z ;

yielding that actually only the modulations M0; : : : ;ML�1
L

are to be considered, be-
cause otherwise a sequence fMl=L ggl2Z could never be a Bessel sequence for g ¤ 0.

The d i s c r e t e G a b o r s y s t e m generated by the atomic sequence g 2 l2.Z/
and shift parameters N and 1=L is now the family of sequences fgk;lgk2Z;l2hLi where
the sequences gk;l 2 l2.Z/ are defined by

gk;l.j /´Ml=LTkNg.j / D e
2�ijl=Lg.j � kN/ :

Like previously, if the system satisfies the frame inequality, it is a Gabor frame
for l2.Z/, and the dual frame is again a Gabor frame built from a dual window
 2 l2.Z/. The frame expansion for any f 2 l2.Z/ now takes the form

f D

1X
kD�1

L�1X
lD0

hf;Ml=LTkNi2Ml=LTkNg :

Many results and conditions for Gabor systems in l2.Z/ can mutatis mutandis be
taken over from L2.R/, e.g., a necessary condition for the mentioned Gabor system
to be a frame for l2.Z/ is that ˛ˇ D N

L
� 1; and if the Gabor system is a frame, it is

a Riesz basis if and only if N D L.

The step from L2.R/ to l2.Z/ is the first one when trying to apply the results so far
achieved for computational implementations. However, infinite sequences or infinite
sums will not make sense when one is interested to achieve results in finite time. In
reality, only finitely many elements can be considered, only vectors of finite length
can be handled and only finite sums can be computed in finite time. Therefore, we
will now take the next step to signals of finite length.



Chapter 3

Finite Discrete Gabor Analysis

3.1 Finite Discrete Periodic Signals

In the last section of the previous chapter we were creating a time-discrete signal
model. We mentioned that for implementing signal analysis on digital computers only
finite sequences f 2 l2.Z/ can be considered. If the length of that sequence is given
as L 2 N, we can interpret this as if f 2 CL and write f D

�
f .0/; : : : ; f .L � 1/

�
,

meaning that it’s no restriction to assume the domain of f to be hLi � Z. This makes
it possible to connect with the results of sequences in l2.Z/.

Whereas the discrete modulation Ml=L defined in (2.17) can still be applied to the
finite case, the translation Tk defined in (2.16) does not make sense for CL unless
j � k 2 hLi. The natural solution lies in a periodic extension of the finite sequences
such that

f .j C nL/´ f .j / 8n 2 Z; j 2 hLi :

Therefore the domain where f is defined is not just the set hLi, but rather the finite
Abelian group G D ZL ´ Z=LZ which is closed under the addition operation. The
finite sequences therefore live in l2.ZL/ Š CL, and we use both spaces synonymously.

It also becomes possible to carry the d i s c r e t e c o n v o l u t i o n of f; g 2 l2.Z/,
defined as

.f � g/.j /´
X
k2Z

f .k/ g.j � k/ ;

over to functions f; g 2 l2.ZL/, because g.j � k/ is now always defined.
The d i s c r e t e Fo u r i e r t r a n s f o r m (DFT) of f 2 CL is defined as

Of .j /´ .Ff /.j /´
L�1X
kD0

f .k/ e�2�ijk=L ; j 2 ZL ; (3.1)

what is up to a constant a unitary mapping CL ! CL. The inverse is given as

.F�1f /.j /´
1

L

L�1X
kD0

f .k/ e2�ijk=L ; j 2 ZL : (3.2)

To define the DFT as the unitary mapping CL ! CL, it has to be equipped with
the prefactor 1

p
L

. But this is not consistent with the implementation in MATLAB or
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Octave, where it behaves like defined above. A well-known and very efficient imple-
mentation of the DFT is the Fast Fourier Transform (FFT).

From now on we abbreviate Ml ´ Ml=L for modulations in CL. The discrete
STFT of f 2 CL with respect to the discrete window g 2 CL is given as

.Vgf /.k; l/ D hf;MlTkgiCL :

The actions of time- and frequency shifts are in more detail given as

Tkf D Tk
�
f .0/; : : : ; f .L � 1/

�
D
�
f .k/; : : : ; f .L � 1/̃

L�k:

; f .0/”
L�kC1:

; : : : ; f .k � 1/
�

and

Mlf DMl

�
f .0/; : : : ; f .L � 1/

�
D

D
�
f .0/; e2�il=Lf .1/; e2�i2l=Lf .2/; : : : ; e2�i.L�1/l=Lf .L � 1/

�
:

The actions of the TF-shifts can be described as matrices that operate on the vector
f D

�
f .0/; : : : ; f .L�1/

�T
. The time-shift matrix Tk is given as the permutation ma-

trix with ones on the (periodized) k-th subdiagonal, whereas the modulation matrix
has its exponential entries positioned at the main diagonal. It is therefore again clear
that the composition of TF-shifts does not commute. In fact, one gets

TkMl D e
2�ikl=LMlTk ; k; l 2 ZL

after a simple computation. To get a joint notation for TF-shifts, we write

�.�/´ �.k; l/´MlTk with � D .k; l/ 2 ZL � ZL ;

where ZL � ZL is the discrete time-frequency plane1. From the commutation rela-
tions one easily derives for � D .r;m/ and � D .s; n/ that

�.�/ �.�/ D �.�C �/ e2�irn=L (3.3)

D �.�/ �.�/ e2�i.rn�sm/=L : (3.4)

3.2 Frames and Gabor Frames in CL

The definitions and results from the previous chapter can be carried over to the fi-
nite discrete case without major problems. One thing that emerges is that things be-
come more related to terms of linear algebra. The conditions for the finite sequence
fg0; : : : ; gN�1g of elements gj 2 CL to be a frame for the finite-dimensional Hilbert
space CL are that there exist A;B > 0 such that

A

L�1X
kD0

jf .k/j
2
�

N�1X
jD0

ˇ̌
hf; gj iCL

ˇ̌2
� B

L�1X
kD0

jf .k/j
2
8f 2 CL

1The TF-plane is often written as ZL �cZL due to the group theoretical syntax G � yG , where yG is the
so-called character group of G , cf. [Grö98].
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or
Akf k

2
2 � kCf k

2
2 � Bkf k

2
2 8f 2 CL ;

where C is the analysis operator. It is obvious that the sequence fgj gj2hN i has to span
all of CL, i.e., spanfgj gj2hN i D CL, because otherwise there would be a non-zero
f 2 spanfgj g?j2hN i such that hf; gj i D 0 for all j 2 hN i, what contradicts the frame
inequality. Thus we must have N � L elements to get a frame in the Hilbert space
with dimension L. The same is valid the other way round: Every set with more (or
equal) than L elements that spans CL is a frame for CL.

The action of the linear analysis operator C on the vector f is given as the vector
Cf D

�
hf; gj i

�
j2hN i

, indicating that its j -th entry is

.Cf /j D hf; gj i D

L�1X
kD0

f .k/ gj .k/ D g
�
j f ;

where g� D NgT. Therefore the matrix form of C 2 CN�L is

C D

�
g�0
:::

g�N�1

�

D

�
g0.0/ � � � g0.L � 1/
:::

:::
:::

gN�1.0/ � � � gN�1.L � 1/

�

:

By this structure we get the equivalence that a family fgj gj2hN i is a frame if and only
if the corresponding analysis operator C has full rank, and every matrix with full
rank uniquely represents a frame. Therefore we can write C synonymously for the
corresponding frame.

The frame operator S D C �C becomes an L � L-matrix that also has full rank,
and it is therefore invertible. Its condition number equals the ratio between its largest
and smallest singular value, what is equal to the ratio B=A.

If we translate the discrete frame expansion

f D C �c D
�
g0; : : : ; gN�1

�� c.0/
:::

c.N � 1/

�

D

� PN�1
jD0 c.j / gj .0/

:::PN�1
jD0 c.j / gj .L � 1/

�

for a given f 2 CL and sought c 2 CN into terms of linear algebra, we notice that
we’re seekingN unknowns c.0/; : : : ; c.N �1/ by using L � N equations, what shows
that the solution cannot be unique in general. Considering that

f D SS�1f D C �C.C �C/�1f ;

we see that one solution for c could be given as

c D C.C �C/�1f D .C �/�f

by computing the pseudoinverse of the synthesis operator C �. This also provides the
matrix form of the canonical dual frame that is given by�

S�1g0; : : : ; S
�1gN�1

��
D
�
S�1C �

��
D CS�1 D .C �/� :
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Now that we have seen what frames in CL look like, we can proceed to the special
case of Gabor frames. These are given as a sequence of TF-shifts of a single window
function g 2 CL, i.e., a Gabor frame for CL is a sequence fg�g�2ƒ´ f�.�/gg�2ƒ for
a certain discrete subset ƒ � ZL � ZL. We write Cg for the Gabor analysis operator
to indicate the dependence on g and use it synonymously for the Gabor frame itself.
It is clear that it is necessary to have N � L elements to span all of CL, but this is of
course not sufficient for validating a frame. The ratio between N and L is also called
the redundancy of the frame,

redC ´
N

L
;

indicating how much more elements are given to span all of CL.
An irregular Gabor frame might be given for arbitraryƒ � ZL�ZL, but as soon as

we have a subgroup ƒ E ZL �ZL, the Gabor frame operator Sg D C �gCg commutes
with all TF-shifts �.�/ for � 2 ƒ, what can be shown in a similar way like we did
in Section 2.2. Therefore the dual frame is once again a Gabor frame, built by the
same TF-shifts of a single dual window  2 CL. The canonical dual frame consists
of elements

S�1g �.�/g D �.�/S�1g g D �.�/ı ;

and the computation of the canonical dual window reduces to finding a solution for
the linear equation

Sg
ı
D g : (3.5)

Therefore, the discrete Gabor expansion of an f 2 CL is given as

f D
X
�2ƒ

˝
f; �.�/g

˛
CL
�.�/ı D

X
�2ƒ

˝
f; �.�/ı

˛
CL
�.�/g ;

where the Gabor coefficients reside in l2.ƒ/ Š CN .
A special case for a lattice is a so-called separable lattice ƒ D ˛ZL � ˇZL with

˛; ˇ 2 N being divisors of L. The elements of such a Gabor frame take the form

MˇlT˛kg.j / D e
2�iˇlj=Lg.j � ˛k/

with k 2
˝
L
˛

˛
and l 2

˝
L
ˇ

˛
. The number of elements is N D L

˛
�
L
ˇ
D

L2

˛ˇ
, and it is

necessary to have L2

˛ˇ
� L elements to have a frame. The oversampled case is therefore

given for ˛ˇ < L, and the undersampled case for ˛ˇ > L. Critical sampling is given
for ˛ˇ D L.

3.3 The Structure of the Gabor Frame Matrix

For any kind of lattice, the discrete (Gabor) frame expansion reads as

f D C �g c

for a certain c 2 CN . A solution is given by

c D .C �g /
�f ;
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what might take some numerical effort to compute. Luckily, for Gabor frames and
ı D S�1g g we get

�.�/ı D �.�/S�1g g D S�1g �.�/g ;

what reads in matrix notation as

Cı D S
�1
g Cg D .C

�
g /
� :

Hence, for Gabor frames it follows that

C �g D C
�
ı

and
S�1g D Sı ;

indicating that it is enough to find ı by solving the linear equation (3.5).
This equation and the above derivations show that the frame matrix Sg is one of the

most important objects in Gabor analysis. Studying this operator not only provides
a deeper understanding of its structure, but also yields methods for fast numerical
computations of the dual window.

3.3.1 The Walnut Representation

In the case of a separable lattice ƒ D ˛ZL � ˇZL, the Gabor frame matrix has a
special structure. As the frame matrix is for any frame given as

Sg D C
�
gCg D

X
�2ƒ

g� g
�
� 2 CL�L ;

its .u; v/-th entry is

.Sg/u;v D
X
�2ƒ

g�.u/ g�.v/ ; u; v 2 hLi :

For a separable lattice, this reads as

.Sg/u;v D

L
˛
�1X

kD0

L
ˇ
�1X

lD0

MˇlT˛kg.u/MˇlT˛kg.v/

D

L
˛
�1X

kD0

L
ˇ
�1X

lD0

e2�iˇlu=L g.u � ˛k/ e�2�iˇlv=L g.v � ˛k/

D

L
˛
�1X

kD0

L
ˇ
�1X

lD0

e2�iˇl.u�v/=L g.u � ˛k/ g.v � ˛k/ :

By looking at the inner sum we can see that generally

M�1X
lD0

e2�ilj=M
D

(
M if j � 0 mod M

0 else ;
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and so the .u; v/-th element of the frame matrix Sg is given by

.Sg/u;v D

(
L
ˇ

PL
˛
�1

kD0
g.u � ˛k/ g.v � ˛k/ if ju � vj � 0 mod L

ˇ

0 otherwise.
(3.6)

Equation (3.6) is the so-called Wa l n u t r e p r e s e n t a t i o n of the Gabor frame
operator on a separable lattice, indicating that Sg is a sparse matrix where

(1) Only every L
ˇ

-th subdiagonal is non-zero,

(2) The entries are L
˛

-periodic within every subdiagonal,

(3) According to [Str97], Sg is a block circulant matrix of the form

Sg D

˙
A0 A1 � � � AL

˛
�1

AL
˛
�1 A0 � � � AL

˛
�2

:::
:::

: : :
:::

A1 A2 � � � A0

�

;

where the blocks Aj are non-circulant ˛ � ˛-matrices with entries

.Aj /u;v D .Sg/uCj˛;vCj˛

due to (3.6), with j 2
˝
L
˛

˛
and u; v 2 h˛i.

3.3.2 The Janssen Representation

For general lattices there is another kind of representation of the Gabor frame matrix,
derived from the fact that the set of time-frequency matrices f�.�/g�2ZL�ZL is an
orthogonal system for the matrix algebra CL�L with respect to the Frobenius inner
product. The system becomes orthonormal for

hA;Bif ´
1

L
hA;BiF D

1

L

L�1X
i;jD0

aij bij :

Therefore every matrix A 2
�
CL�L; h–; –if

�
has a unique expansion

A D
X

�2ZL�ZL

c� �.�/ (3.7)

with respect to the orthonormal system f�.�/g�2ZL�ZL . This expansion is also called
a time-frequency representation and has a generalization to the continuous case,
cf. [FLW07].

The Gabor frame matrix Sg is at first sight “yet another matrix” in CL�L with some
time-frequency representation like in (3.7), but the introduced decomposition has an
essential simplification due to a special structure of Sg that depends on another time-
frequency sampling lattice.
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(a) Lattice (b) Adjoint lattice (c) Union of both lattices

FIGURE 3.1: A lattice and its adjoint lattice

3.3.1 Definition The a d j o i n t l a t t i c e ƒı to the lattice ƒ E ZL � ZL consists of
those elements �ı 2 ZL � ZL for which

�.�/ �.�ı/ D �.�ı/ �.�/ (3.8)

holds for all � 2 ƒ.

According to (3.4), if � D .k; l/ and �ı D .kı; lı/, then we must have

e2�i.klı�kıl/=L
D 1 (3.9)

for all .k; l/ 2 ƒ and all .kı; lı/ 2 ƒı. In other words, the time-frequency shifts on
the adjoint lattice commute with those on the original lattice.

The syntax �ı might be a bit misleading, as one could read that there is a single
�ı for each � such that the commutation (3.8) holds. In fact, if �.�/ commutes with
�.�0/ for a certain �0 2 ƒ, then it also commutes with all �.�/ for � 2 ƒ n f�0g.

Note that jƒjjƒıj D L2. In the case of a separable lattice ƒ D ˛ZL � ˇZL, the
adjoint lattice is just ƒı D L

ˇ
ZL �

L
˛

ZL.
Coming back to the Gabor frame matrix, we saw that it commutes with all TF-

shift matrices �.�/ with � 2 ƒ as well. As it can be uniquely expanded into a sum of
TF-matrices like in (3.7), it immediately becomes clear that only those coefficients c�
can be non-zero that apply to �.�ı/ for �ı 2 ƒı. The time-frequency representation
of Sg therefore is

Sg D
X
�ı2ƒı

c�ı �.�
ı/ ;

what is known as the J a n s s e n r e p r e s e n t a t i o n of Sg . It can be shown [FLW07]
that the Janssen coefficients c�ı are given as

c�ı D
˝
Sg ; �.�

ı/
˛
f D

N

L

˝
g; �.�ı/g

˛
CL
D
N

L
.Vgg/.�

ı/ :

This relation allows for efficient numerical computation of the Janssen coefficients by
using the standard FFT for the STFT.

The benefits from the knowledge of the structure of the Gabor matrix is that it
paves the way for efficient numerical solutions of the linear equation (3.5) and thus
for efficient computation of the dual Gabor system for reconstruction, what we will
discuss in the following.



34 Chapter 3. Finite Discrete Gabor Analysis

3.3.3 Factorizations of the Gabor Matrices

If we think back to Section 1.6 about the pseudoinverse of matrices, we saw that when
the unitary factorization of a matrix A D U†V � was found, the computation of the
pseudoinverse A� D V †�U � reduces to the calculation of the pseudoinverse of a di-
agonal matrix †, what is done with much more simplicity. As the calculation of the
dual Gabor system involves S�1g or C �g , we seek unitary factorizations of these matri-
ces to either make Sg easier invertible or make the obtainment of the pseudoinverse
of Cg easier possible.

Normal matrices A, i.e. such where AA� D A�A, are diagonalizable into � D
U �AU , but it might still need some effort to actually find U and compute the matrix
productU �AU . However, if the diagonality condition on� can be relaxed, one might
be able to find applicable unitary matricesU more easily, computeU �AU more easily,
and � D U �AU could at least be block diagonal, such that the (pseudo-) inversion
reduces to (pseudo-) inverting the blocks separately [GvL96]. We will now summarize
why the matrices occurring in discrete Gabor expansions meet these directives, and
start with the definition of some special matrices.

We already know that diag.d/ D diag.d0; : : : ; dL�1/ is the L�L-matrix containing
d 2 CL in its main diagonal. If D0; : : : ;DL�1 are p � p-matrices, we use the same
notation to describe the block diagonal matrix

diag.D0; : : : ;DL�1/´

˙
D0 0 � � � 0

0 D1 � � � 0
:::

:::
: : :

:::

0 0 � � � DL�1

�

2 CpL�pL

with 0 2 Cp�p.

3.3.2 Definition A p e r m u t a t i o n m a t r i x is derived from the identity matrix IL
by a reordering of its columns. The M o d u l o p p e r f e c t s h u f f l e p e r m u t a -
t i o n Pp;L with L D pq is a certain kind of permutation matrix that reorders the
rows of an L � L-matrix (or of a vector in CL) in the following way:

Pp;LW f0; 1; : : : ; L � 1g 7! f0; q; 2q; : : : ; .p � 1/q; 1; q C 1; : : : ; .q � 1/p � 1; pq � 1g :

3.3.3 Definition The Fo u r i e r m a t r i x FL 2 CL�L of order L implements the
unitary DFT on CL and has the symmetric form

FL´

r
1

L

�
1 1 1 � � � 1

1 w w2 � � � wL�1

1 w2 w4 � � � w2.L�1/

:::
:::

:::
: : :

:::

1 wL�1 w2.L�1/ � � � w.L�1/.L�1/

�

(3.10)

with w´ e�2�i=L.
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3.3.4 Definition The K r o n e c k e r p r o d u c t A˝ B of A 2 Cp�q and B 2 Cm�n

is the p � q block matrix

A˝ B ´

�
a0;0B � � � a0;q�1B
:::

:::

ap�1;0B � � � ap�1;q�1B

�

2 Cpm�qn

with blocks of size m � n.

Note that Ip ˝ B D diag.B; : : : ; B̃

p times

/ 2 Cpm�pn is block diagonal.

These matrices are now the ingredients of important factorizations of the Gabor
frame matrix in the case of a product lattice ƒ D ˛ZL � ˇZL:

3.3.5 Theorem Sg can be unitarily factorized into the block diagonal matrix

�Sg D P
�
L=ˇ;L Sg PL=ˇ;L D diag.B0; : : : ; BL=ˇ�1/ ;

where Bk is the ˇ � ˇ-matrix with entries

.Bk/u;v D .Sg/kCuL=ˇ;kCvL=ˇ :

P r o o f . See [Str97, 8.3.1].

3.3.6 Theorem Sg can be unitarily factorized into a block diagonal matrix by�
FL=˛ ˝ I˛

��
Sg
�
FL=˛ ˝ I˛

�
:

P r o o f . See [Str97, 8.3.3].

The block diagonalization of Theorem 3.3.5 can be derived from a block diagonal-
ization of the analysis matrix Cg found by Prinz in [Pri96]:

3.3.7 Proposition The matrix Cg can be factorized into a block diagonal matrix

�Cg D P
�
L=ˇ;L Cg

�
IL=˛ ˝ F �L=ˇ

�
P �
L=˛;L2=.˛ˇ/

D diag.W0; : : : ; WL=ˇ�1/

with rectangular ˇ � L
˛

-blocks Wk with entries

.Wk/u;v D
q
L
ˇ
g
�
k C uL

ˇ
� v˛

�
:

A benefit of this structure is that the blocks Wk can be obtained by simple permu-
tations of the entries of g. Finally, it can be shown that the derived factorizations
relate as

�Sg D �Cg�
�
Cg
:

Cg and thus �Cg are not invertible in the case of oversampling, but due to ��Cg D
��Cg.�Cg�

�
Cg
/�1, the dual Gabor system is obtained by the inversion of �Sg .

These methods for quick computation of the discrete Gabor transform were re-
cently extended by Søndergaard in [Søn07] to multiple signals f 2 CL�N , where N
is the number of signals.



36 Chapter 3. Finite Discrete Gabor Analysis

(a) Product lattice (n D 24, ˛ D 3, ˇ D 6) (b) Quincunx lattice (n D 24, dr D dc D 6)

FIGURE 3.2: Sampling subgroups with redundancy 4
3

and their building blocks

3.4 The Dual Window on Non-Separable Sampling Sets

There is the question of how the dual Gabor window can be calculated efficiently
for arbitrary sampling subgroups ƒ E ZL � ZL besides pseudo-inverting the corre-
sponding Gabor analysis operator. Prinz proposed a method in [Pri96] by reducing
the case of non-separable subgroups to the known case of a separable subgroup, what
makes it possible to apply the factorization methods that we mentioned in the previ-
ous section.

Why should non-separable subgroups be of interest? An important thing that
emerges is that a non-separable sampling set might yield some better properties of
the dual window, like a better localization compared to the dual on a separable lat-
tice ƒ D ˛ZL � ˇZL, even if a lower redundancy is used. For certain non-separable
cases, however, the raise of truly complex-valued duals might not be favored for (par-
tial) reconstruction. In this section we will show examples for both cases.

General sampling subgroups can be represented by the smallest row and column
distance .dr; dc/ and by the sampling points .k; l/ ¤ .0; 0/ that satisfy k < dr and
l < dc, cf. [Pri96]. It turns out that any sampling matrix is a block matrix determined
by a single dr � dc-block. A product lattice for instance has four points at the corners
of the block with size ˛ � ˇ, cf. subfigure 3.2a. A special case of a non-separable
subgroup is the so-called quincunx lattice, where the corresponding block is square
and the points are located like those of the number 5 on a dice; cf. subfigure 3.2b. It
looks like a union of a product lattice plus the lattice shifted by half of the distance
between the points.

A direct approach for describing Gabor expansions on a quincunx lattice is given
by Bastiaans and van Leest e.g. in [BvL98a] and [BvL98b]. However, the bookkeep-
ing of various indices and prefactors takes quite some effort that is avoided in the
language of group theory. By the way, it is not possible to keep the number of sam-
pling points and thus the redundancy when switching from a square product lattice
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FIGURE 3.3: Dual windows on general subgroups with zero imaginary part. The
signal length is L D 144, and the initial product lattice is built by ˛ D 9 and ˇ D
12. The other lattices are built by extracting the subdiagonals of the lattice matrices
subsequently and thus share the same redundancy of 4

3
.
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FIGURE 3.4: Dual windows on general subgroups with non-zero imaginary part.
The lattices are built the same way as in Figure 3.3.
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with L2

˛2
points to a quincunx lattice with 2n2 points, as this would force

L2

˛2
D 2n2)

p
2 D

L

˛n
2 Q ;

what can never be achieved.
The upper two subfigures in Figure 3.3 show a product lattice and the correspond-

ing dual window for the Gaussian of length L D 144. In MATLAB the lattice is
stored as a 0-1-matrix with ones at the position of the sampling points and is con-
structed by the function lattp.m developed by NuHAG. One way of getting to a
non-separable subgroup with same redundancy is extracting the diagonals of the lat-
tice matrix and using it as new sampling matrix. This extraction is implemented by
sidedigm.m. Applying this method subsequently yields various separable or non-
separable subgroups with the same number of points and thus with same redundancy
as the initial product lattice. Unluckily, one cannot derive all possible subgroups of
given redundancy this way. The remaining three subfigures in Figure 3.3 show exam-
ples of sampling lattices where the dual remains purely real-valued.

However, on other (non-separable) lattices with same redundancy the dual might
get a significant imaginary part as shown in Figure 3.4. The second lattice in that fig-
ure is an example for a case where the real part of the dual is very well localized, but
its non-zero imaginary part eventually equips the whole dual with the same overall
localization as the duals on the other lattices with same number of sampling points.
If a partial Gabor reconstruction is done on such a subgroup where the dual is truly
complex, one ends up with a truly complex signal as well, what might not be pre-
ferred for comparison with an initially real-valued signal. In the case of a full Gabor
reconstruction the imaginary part of the signal should of course turn numerically
zero.

Finite-dimensional discrete Gabor analysis is usually described for one-dimensio-
nal signals, i.e., signal vectors in CL, just as it was done in this chapter. As this
thesis wants to show Gabor expansions of image signals, some things emerge that are
not present in the case of one-dimensional signals. Therefore, we will now explore
the basics of what image signals are and how classical Fourier analysis of these is
done in the next chapter. Chapter 5 finally extends the analysis of images to Gabor
expansions.





Chapter 4

Fourier Analysis of Discrete Images

4.1 Digital Representation of Images

In this section we want to give a brief summary of how image signals are represented
in digital computers, what their value range is and how they are shaped.

Time-variant signals such as sound or brainwaves (electroencephalograms, EEG)
are one-dimensional (1D) signals because they only evolve in the time dimension.
When such signals are to be represented in digital computers, they can only be con-
sidered as a discrete and finite sequence of real values. The length of this sequence
is called the signal length. Mathematically, such a signal of length L is considered
as vector in CL although real signals might only be real-valued. One should not
confuse the L-dimensionality of the signal space with the one-dimensionality of the
signal as such; a 1D signal should be seen as a synonym for a signal vector. Although
the sequence values are ordered corresponding to their chronological occurrence, the
actual time span in which they subsequently occur is not represented in the vector
as such. It has to be clear from the signal processing context how many subsequent
values or samples occur within a certain time span. This is called the sampling rate of
the signal.

The value range of 1D signals allows arbitrary finite real or complex values, as
far as they can be represented as numerical values. Sine waves for example simply
oscillate between �1 and 1.

4.1.1 The Nature of Images

For the case of the representation of natural images as digital signals, some more
things have to be considered. One way to try to understand natural images is to
define them as projections of three-dimensional (3D) natural structures onto a two-
dimensional (2D) plane by means of electromagnetic rays such as light or x-rays, or
particle rays such as electrons. The rays are sent out in parallel, e.g. by the sun or
an artificial source, are reflected or filtered by the structures and strike on a planar
sensor such as the animal or human retina or an artificial sensor that is sensitive to
the corresponding type of rays. Artificial sensors are built to imitate the behavior of
the retina. However, if the surfaces emit rays by themselves, these could be detected
directly, if e.g. the surface of the sun or the heat behavior of a different surface are to
be studied. The detected intensity of the rays is then coded into corresponding low
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and high (numerical) values. In the case of biological vision, a low intensity of rays is
interpreted in the brain as darkness or shadows, and high intensities are seen bright.

As long as all this is time-invariant, an image does not evolve in (one-dimensional)
time, but on a two-dimensional plane. In the case of time-variance of these images,
the signal is to be considered three-dimensional, as a finite collection of single images,
each representing a certain discrete time-position.

Throughout this thesis, only the time-invariant case of 2D signals is considered,
what may correspond to a single temporal sample of a time-variant image signal.

4.1.2 Digital Images and Color

The discretized versions of natural images can still be considered as vectors of finite
length if it is clear what values correspond to what locations on the plane. However,
many applications have the target to make these digital representations again visible
to the human eye. One-dimensional signals are most of the time visualized as two-
dimensional graphs, with time evolving horizontally and the signal values vertically.
2D signals could therefore be visualized as (projections of) three-dimensional graphs,
but this does not correspond to the behavior of the human or animal retina. Graph-
ically, the detected low intensities, coded as low numerical values, should be made
visible as “dark” values, and detected high intensities should again appear “bright”.
Therefore, instead of presenting a graph of the values over a tilted plane, the values
should be represented directly on a planar surface as tones of black, gray and white
spots at the corresponding positions on the plane.

However, these intensities do not consider color. Even if the ray source consisted
of electro-magnetic waves of different wavelength, so far we can only construct black-
and-white images, what might be enough for heat images or images of surface struc-
ture, but it is not clear how certain intensity values should be mapped back to electro-
magnetic waves of different wavelength, or, in other words, what color the human eye
would have seen at certain spots. The only possibility so far would be using a dif-
ferent colormap, where certain intensities are not just represented as shades between
black and white. For instance, infrared images (heat images) could be presented with
false colors to the human eye, where low temperatures (low numerical values) are vi-
sualized as tones of blue, and high temperatures (high numerical values) as tones of
red. The values “in between” could again be represented by other colors to make the
middle tones better visible to the human eye.

As the human eye cannot see infrared light or x-rays, it is even more important
to visualize image values in a reasonable way. If it comes to natural images where
colors should be representable, one immediately steps over the two ways of creating
colors: The additive or the subtractive way. Additive color creation happens by the
direct emission of certain wavelengths of light, whereas subtractive color happens by
filtering certain wavelengths out of light that already contains many different wave-
lengths. The concept of additive color is not a property of light itself, but a result
of how the human eye detects color. The additive reproduction process usually uses
varying intensities of red, green and blue light, what is enough to produce a reason-
able subset of the possible colors in human vision. The subtractive color system is
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implemented through pigments, dyes, inks and other substances by filtering and re-
flection. Here, the basic colors are cyan (bluish), magenta (reddish), and yellow. In
printing processes that usually happen onto white surfaces, black is added for a better
representation of correspondingly dark values.

These two color models are also implemented in digital computers. Additive color
creation happens at monitors or screens by active light emission, whereas colors are
created the subtractive way in print-outs. The corresponding color models are com-
monly named by abbreviating the incorporated basic colors and are therefore referred
to as the RGB or CMYK color models, where the K stands for black. It is impor-
tant to note that the created color spaces are disjoint, e.g. there are RGB colors that
cannot be represented as CMYK colors and vice versa. In addition, the exact map-
ping between RGB and CMYK may vary with the used hardware implementations
on both sides.

4.1.3 RGB Images

Our first restriction is that to the RGB color model. RGB color images are repre-
sented in digital computers by considering the three color channels as three different
intensity images. Each of the three images represents the intensities of red, green and
blue light, respectively, by using corresponding low and high numerical values. As it
is not possible to do such a split after the recording of an image with a light sensor,
sensors either have to be covered by corresponding color filters, or three different sen-
sors have to be used to distinguish the recorded light intensities into the three color
layers of an image.

So far we have not defined where “low” and “high” numerical values may range.
In digital computers, numerical values are stored as binary values with a certain fixed
digit length. The more bits (binary digits) are allowed, the higher decimal values can
be represented. It is common to use a width of 8 bits for each color channel, as
this allows for coding 256 integer values between 0 and 255 for each of the channels,
what makes it possible to code 256 � 256 � 256 and therefore more than 16.7 million
different color values, what is a good compromise between computational simplicity
and the demands of the human eye. But the true reason for using 8-bit values is that
today’s standard hardware is limited in its capability of either detecting or showing
many different color shades.

Figure 4.1 visualizes the red, green and blue color channels of an RGB image as
three different black-and-white images. One can see how the nose of the pictured
animal shows intensities mostly in the red channel, whereas the area around the nose
has its intensities in the green and blue channel. This results in a red colored nose in
the actual color image, and the surrounding area appears in a light blue. The eyes are
also intense in the red channel, and a little amount of green gives them their orange
color in the resulting image.

In this thesis we restrict to only a single color layer and therefore to simple black-
and-white images with values between 0 and 255. This of course will ignore phenom-
ena that do not just happen within a single color channel. Therefore, disturbances
that incorporate all three color layers at certain areas on the two-dimensional plane
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FIGURE 4.1: Red, green and blue color channel of an RGB image

are not considered here.

One already notices a little discrepancy between the visualization of low or high
numerical values. Low ray intensities appear dark or black to the human eye and
correspond to numerical values close or equal to zero. The opposite is a high pres-
ence of light, seen as bright color and represented as high numerical values close or
equal to 255. However, for usual prints on white paper it’s just the other way round:
Dark colors are created by a high presence of black ink or toner, and bright or white
colors are given by the absence of ink and the white color of the paper. Therefore,
when visualizing low or high values, one must not mix this up with presence or ab-
sence of ink. As prints of digital images are shown in this thesis, we should keep in
mind that dark colors represent low values and bright colors represent high values.
If however most of the values in a signal are low and if it appears reasonable to not
show an almost black image, the color map might be inverted and zero-values cor-
respond to the white color of the paper. It should be clear from the context or from
the graphics what color map is in use. Additionally, if significant behavior of an im-
age mainly happens in the lower or the higher value range, the color map might be
changed to a non-linear one such that the diversity in the image is better visible to the
human eye. Also, if for whatever reason the image values excess the allowed range
after numerical processings, the values are scaled back into their allowed range for
presenting prints. We equip figures of images with a corresponding color bar where
possible or reasonable.

We mentioned that such an image can still be given as a vector, but it is not auto-
matically clear what values appear at what position. To avoid an additional storage of
coordinates, numerical computer software such as MATLAB or Octave simply shape
a digital image into a matrix form. This way the pixels (picture elements) get their
coordinates simply by their location in the number matrix. This case of quadratic
pixels is the easiest to implement, for both software or hardware engineers. As for 1D
signals, it should be clear from the type of application how many subsequent pixels
represent a certain “real” length, if it is important at all.

However, for describing the evaluation of linear operations mathematically, this
still has to be done by applying operator matrices on signal vectors.
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4.2 Understanding 2D Frequencies

Fourier series have a very natural relation to acoustics. They define a periodic func-
tion as a series of exponential functions, and from acoustics one might remember
that tones and sound are composed of pure oscillations that overlay without distur-
bance. The speed of oscillation of a complex exponential function can therefore be
interpreted as such a pure frequency. The Fourier transform of a sound signal is a
perfect way to show what frequencies occur in the sound.

We defined the Fourier transform in a general way, what allows it to be used for
image signals. An image is as well analyzed into certain oscillating building blocks,
but the idea of a two-dimensional (2D) frequency doesn’t seem very natural. Whereas
one might have some understanding that frequencies can be heard, there might be
some uncertainty whether one has ever seen a 2D frequency.

In this section we want to take a closer look at the exponentials e2�ix�! for x;! 2
R2 or even in Rd , as these are the building blocks of the continuous Fourier trans-
form. Considering that x � y D hx;yiCd , it is not immediately clear how eihx;!i

behaves as a function in multidimensional x and!, whereas it is easier to understand
for t; ! 2 R: Here, the inner product is just the product !t 2 R, and seeing t as time,
ei!t rotates quicker on the complex unit circle the larger j!j gets, and naming ! the
frequency has a very natural justification. The graph of this exponential is a helix in
R �C.

The first increment in dimension leads to a non-trivial form of the inner product,
and we first try to understand u.x;y/ ´ hx;yi as a (linear) function in x;y 2 R2.
Unfortunately, u is now a mapping R4 ! R, what is rather difficult to visualize. To
be able to get a better picture, we first fix y D a 2 R2 and look at the function
ua.x/´ hx; ai what is now a mapping R2 ! R and therefore easy to visualize. We
know that the inner product hx;yi D

Pd
kD1 xkyk is a linear function for x;y 2 Rd ,

and in the 2D case it just corresponds to a plane equation z D a1x1 C a2x2. That
plane cuts the zero-plane z D 0 in a straight line that is dependent on the orientation
of the fixed y D a: The zero-line evolves where the vectors x are orthogonal to the
fixed vector y, i.e., hx;yi D 0, x ? y. This zero-line will now change its angle on
the zero-plane while varying the fixed vector y. This gives a picture how it behaves
as a whole, and it provides the key for understanding what happens when the inner
product is put into the exponent of the complex exponential function.

As hx;yi 2 R for x;y 2 R2, the exponential eihx;yi still has its values on the
complex unit circle. Fixing a vector ! 2 R2 and varying x 2 R2, eihx;!i rotates
fastest on the unit circle if x “goes parallel” to !, and it is constant when x “goes
perpendicular” to !. Keeping x parallel to !, the speed of the oscillation increases
with increasing length of j!j, as the plane x 7! hx;!i becomes steeper. For real
signals, it makes sense to look at the real part of the exponential only, and just as in
the 1D case, the 2D oscillation also describes a wave, a plane wave with oscillations
between�1 and 1when going on x parallel to!, and with constant value when going
perpendicular to !.

Seeing the 2D elementary circle functions as building blocks for images, they ap-
pear as line patterns, where the “density” of the pattern grows and shrinks with j!j.
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FIGURE 4.2: Real parts of e2�ihx;!i for ! D .0:5; 1/T and ! D .1;�2/T. The plane
waves are shown as 3D graphs and as black-and-white images, where the vectors !
are indicated by the respective arrows.

Compared to the 1D case, there is now a second degree of freedom—the orientation.
Instead of seeing !1 and !2 as the components of a 2D frequency, one might prefer to
see j!j as the parameter for the pattern density and define an orientation � 2 .��; ��
for j!j ¤ 0 similar to the argument of complex numbers by

� ´

(
arccos !1

j!j
!2 � 0

� arccos !1
j!j

!2 < 0 :

The 2D Fourier transform of a function in x 2 R2 is a function in ! 2 R2, con-
sidering all possible pattern densities and all their orientations, and analyzing the
amount of the corresponding 2D frequency among the variations of the function val-
ues. When we talk about low or high 2D frequencies, we mean low and high values
of j!j and include all orientations � .

Considering that e2�ix�! D e2�i.x1!1C���Cxd!d / D e2�ix1!1 � � � e2�ixd!d for x;! 2 Rd

and writing .f ˝ g/.x; y/´ f .x/ g.y/, a d -dimensional frequency function can be
described as a tensor product of d one-dimensional oscillations.

The term “frequency” as “oscillations per time” is not valid anymore for signals
with more than one dimension. Images don’t have a temporal domain, but two spatial
domains, making a 2D frequency a description for “oscillations per area”. Instead
of talking about the time-frequency analysis of images, one could rather use terms
like position-frequency analysis or space-wavenumber analysis. Mathematically, time-
frequency analysis happens in arbitrary dimensions anyway.

4.3 Frequency Behavior of Natural Images

As we observed that images can as well be described as being composed of pure
planar oscillations, we now want to have a look at what the Fourier transform of
natural images tells us, what patterns are dominant and how image signals respond
to a filtering or thresholding of the Fourier coefficients.

In signal processing, signals are considered as finite periodic sequences, meaning
that for f D

�
f .0/; : : : ; f .L � 1/

�
2 CL with signal length L 2 N one has f .j / D

f .j CnL/ for all n 2 Z and j 2 hLi ´ f0; : : : ; L� 1g. The domain of f is therefore
given as ZL ´ Z=LZ rather than just as the set hLi, what ensures the structure
of a finite Abelian group G under the addition operation. The signal space can be
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FIGURE 4.3: The well-known Lena image and its 2D-FFT spectrum

described as l2.G / D l2.ZL/ Š CL. Image signals incorporate a second signal
length, and the image space can be described as

l2.G / D l2.ZL1 � ZL2/ Š CL1 ˝CL2 Š CL1L2 :

L1 and L2 are the height and width1 of an image, and the group structure of G D
ZL1�ZL2 yields a two-dimensional periodicity, where the image plane becomes some
sort of discrete torus. Just as for 1D signals, discontinuities might appear at the signal
borders when performing time-frequency analysis, because values at opposite borders
become neighbors.

Given an image f D
�
f .u; v/

�
u;v
2 CL1�L2 , its 2D discrete Fourier Transform

(DFT) is given as

Of .j; k/ D .Ff /.j; k/ D
L1�1X
uD0

L2�1X
vD0

f .u; v/ e�2�i.uj=L1Cvk=L2/ (4.1)

for .j; k/ 2 ZL1 � ZL2 .
We will look at some examples. Figure 4.3 shows the well-known Lena image and

its 2D Fast Fourier Transform (FFT), an efficient numerical implementation of the
2D DFT. The coefficients are shown in their absolute values, resulting in an image of
the Fourier power spectrum. Image domain and frequency domain have the same size
of 512�512 pixels. As the image signal is real-valued, the image of the Fourier power
spectrum shows a symmetry, similar to the symmetry that is known for the Fourier
transform of real-valued 1D signals. The colormap in Subfigure 4.3b has been scaled
to visualize the lower values among the Fourier coefficients. This is because the low-
est frequencies, located at the center of 4.3b, are very dominant such that only the
very center would appear as a single black pixel when using a linear colormap. The

1Numerical software such as MATLAB or Octave name the vertical dimension first, just like for
L1 � L2-matrices. Image processing software usually does it the other way round and talks about
an L2 � L1-image.
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FIGURE 4.4: A zebra image and its 2D-FFT spectrum

horizontal and vertical line going through the center of the FFT-image are due to dis-
turbances at the borders of the Lena image, where a quick (local) change from dark
to bright means a jump from low to high values. This discontinuity yields a wide
range of frequencies in the Fourier coefficients, just as it is known for 1D signals, and
this wide frequency range is indicated by the horizontal and vertical line going from
the center to the borders. Figure 4.5 shows what is meant by 2D periodicity, and the
border discontinuities of the Lena image are clearly visible.

Besides those horizontal and vertical discontinuities, Subfigure 4.3b also seems to
indicate a dominant frequency range from “northwest” to “southeast” of the center.
One should remember that the line patterns of a pure 2D oscillation are perpendicular
to the corresponding 2D frequency vector. Therefore, the observed direction indicates
that there must be local jumps from dark to bright in the direction from the upper
right to the lower left of the Lena image 4.3a. Indeed, we might presume them as
parts of the mirror and Lena’s hat.

Another test image we will frequently use is that of a Grevy’s zebra, sized 480�480
pixels. The visual appearance of the pure 2D oscillations as black-and-white line
patterns in images suggests the usage of a zebra test image, as one intuitively guesses
that such an image contains many lone oscillations at various positions. Figure 4.4
shows the zebra image and its 2D-FFT. We don’t see those border discontinuities like
in the 2D-FFT of the Lena image, what Subfigure 4.5b confirms. Nevertheless, some
other frequencies seem to be dominant compared to the Lena image. The spots to
the left and right of the center of 4.4b correspond to vertical line patterns of medium
frequency, and we guess them as the zebra patterns at the body of the animal. Just
as mentioned in Section 1.4, the Fourier transform lacks information of where these
frequencies actually occur. This will eventually lead us to looking at the STFT of an
image signal. The term “short-time” is again misleading for the 2D case, and one
might prefer to talk about a localized Fourier transform or simply a windowed Fourier
transform.

As a different approach to get a better idea of where the indicated frequencies ac-
tually occur in the analyzed image, one could do a corresponding masking of the
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FIGURE 4.5: Image signals are periodic over their borders

Fourier coefficients and compute the inverse Fourier transform. Uninteresting fre-
quencies can be suppressed by putting their Fourier coefficient values to zero, the
inverse Fourier transform will therefore only consider the untouched coefficients and
the resulting image signal will only be composed of the interesting frequencies. We
want to do an experiment on that, as we notice that our two test images seem to be
heavily dominant in the lowest frequencies2. Indeed, subfigures 4.3b and 4.4b only
scale the lowest 0.5% of the Fourier coefficients into the colormap from white (low-
est) to black (highest). The upper 99.5% also appear black and only consist of a few
pixels around the centers.

4.3.1 Experiment: Coefficient Filtering by Masking

We want to ask what pure oscillations give what contributions to the complete image.
To what extent do low frequencies contribute so much to the image? What properties
do the medium or high frequencies add to the image? We will answer these questions
by applying different masks to the domain of Fourier coefficients such that only the
lower, medium or higher frequencies will survive. A circular partition around the
center of the Fourier domain allows to cover all orientations � of frequencies within a
certain value range of j!j. By doing the inverse DFT we assess the visual appearance
of the reconstruction and measure the differences to the original image.

Applying a mask to the Fourier coefficient space corresponds to applying a window
function to the Fourier transform that trims the coefficient values to an area of inter-
est. The 2D-FFT of an L1 �L2 image yields a matrix of same size, and a mask could
therefore be implemented as pointwise multiplication by another matrix of same size,
namely by a 0-1-matrix with ones at locations where the Fourier coefficients should
survive, and with zeroes where they should be put to zero.

The four images on the left of Figure 4.6 show four such disjoint maskings on the
Fourier space of the Lena image, and the four images on the right show the corre-
sponding reconstructions by the inverse 2D-FFT. The masks have circular bound-
aries that correspond to 5%, 20%, 50% and 100% of the maximum radius around the

2Do not mix up low frequencies j!j with low coefficient values j Of .!/j.
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FIGURE 4.6: Reconstruction of Lena from masked Fourier coefficients
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FIGURE 4.7: Reconstruction of zebra from masked Fourier coefficients
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zero point. In the case of Lena, these radii amount to 13, 51, 128 and 256 pixels.
Figure 4.7 shows the same procedure for the zebra image, where the radii of the mask
boundaries amount to 12, 48, 120 and 240 pixels.

The upper two images in both Figure 4.6 and 4.7 show a restriction of the coef-
ficients to the innermost circular area, covering all coefficients with frequencies of
length lower than 5%. This implements a low-pass filter. It seems that the low fre-
quencies are responsible for producing homogeneous areas on the image. The recon-
struction shows the white, gray and black areas that are present in the original, but it
lacks contour, sharpness and clear borders. So far, the difference between the recon-
structed Lena and the original amounts to 0.2053, and that between the reconstructed
zebra and the original to 0.3847.

The next two images in both Figure 4.6 and 4.7 show the inner ring on the Fourier
domain and the corresponding reconstructed image. The mask covers the next bunch
of higher frequencies with a length between 5% and 20% of the half image width. This
ring implements a band-pass filter. It seems that these medium-ranged frequencies
are responsible for producing raw borders and small areas. These images seem to
purely add the bounderies of the areas we detected above, as the visible gray areas
only correspond to zero values and therefore don’t add up much to the complete
image. The Lena image doesn’t seem to possess coarse texture, wheres for the zebra
we detected the broader line patterns on the neck and body of the animal. Adding
these rings to the previous masks, the difference between the original Lena and its
reconstruction reduces to 0.0979, and that between the zebra and its reconstruction
to 0.2990.

The next outer rings on the Fourier domains cover even higher frequencies that re-
flect the boundaries and contours of the original images. Lena doesn’t appear to have
finer texture in the image, and for the zebra we detected the narrower line patterns on
the body and legs of the animal. Adding these rings to the previous masks, the error
for the Lena image becomes 0.0441, and that of the zebra 0.1317.

The outermost rings on the Fourier domains finally contain the frequencies respon-
sible for constructing the clear sharpness and hard edges in the final image. Including
these rings eventually reduces the error for the Lena image to 0.0115, and that of the
zebra to 0.0248. This sequence of differences indicates that the Lena image is more
concentrated in the lower frequencies than the zebra.

As a conclusion, we found out that the lowest frequencies are responsible for cre-
ating the areas, and they already determine the image to a high degree. Frequencies
in the middle range construct boundaries, coarse details and coarse texture, and are
responsible for adding some contour3. Higher frequencies are dominant where fine
details, fine texture or edges occur. The highest frequencies are needed to add the last
bit to the sharpness and hard edges of the image, but their contribution is only low.

This makes it possible to compare natural images to natural sounds such as music,
and raises some ideas for doing windowed 2D Fourier transforms by looking at the
1D case: For music, the lower frequencies create melody, and for a good frequency
discrimination one needs a narrow window on the frequency domain. But due to the

3The term contrast is reserved for describing the difference between the lowest and highest values.
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FIGURE 4.8: A 2D Gaussian function as tensor product of two 1D Gaussians. The
plots could show the localization of a 1D Gaussian in the time-frequency space, or a
2D Gaussian in the image space, or its 2D Fourier transform in the Fourier space.

uncertainty principle these will have a wider support on the time domain, resulting
in a low capability of temporal resolution. Luckily, higher temporal resolution is not
needed for the lower frequencies, but the picture changes for the higher frequencies
in music. These carry the transient or even percussive part and need a good temporal
resolution, demanding a window with narrow support on the time domain. This
will result in a wide window on the frequency domain, making a good distinction
of frequencies hardly possible. Luckily, there’s not a need for doing this. It’s not of
that interest what exact frequencies transient or percussive sounds contain, a coarse
knowledge is enough as the main interest lies in the temporal behavior.

The same approach could now be taken for analyzing natural images: It seems
to be important to distinguish low frequencies, as they highly determine the image,
demanding a good resolution and therefore a narrow window on the 2D Fourier do-
main, resulting in a window with wide support on the image domain and therefore
only unsharp localization on the image itself. However, the higher frequencies are
responsible for creating boundaries and contour, and one needs a good local resolu-
tion for these. Frequency resolution will therefore be bad due to the resulting wide
support on the Fourier domain, but a knowledge of the exact frequency values is not
needed for describing contours.

If one is mainly interested in texture analysis, then the medium-ranged frequencies
might be of importance. For texture classification, a better frequency resolution is
reasonable and the localization might not be that important.

4.4 STFT of Discrete Images

Looking back to Figure 1.1 we were able to visualize the time-frequency behavior of
1D signals with the help of the STFT. As it is a function in time an frequency, its
domain is two-dimensional, and a plot could be provided as a 3D plot or an image
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plot. The STFTs in Figure 1.1 incorporated different windows and therefore show
different aspects of the time-frequency behavior of the signals. Using the Gaussian
as analyzing window minimizes the time-frequency fuzziness.

Now, if the signals are 2D themselves, their Fourier domain is 2D as well. The
combined position-frequency4 space is

G � yG D ZL1 � ZL2 �4ZL1 � ZL2

and possesses four dimensions. This makes it rather difficult to visualize the four-
dimensional (4D) position-frequency behavior of an image. It’s already hard to vi-
sualize values that evolve in three dimensions, like the temperature behavior or fluid
dynamics of the solar surface. In such cases, the values are usually represented as
colors in a certain colormap, and the 3D space might be pervaded by slice planes that
can be plotted more easily. But for the 4D position-frequency space of images, there
seems to be no reasonable approach but showing the two 2D planes—position and
frequency—separately.

Our image space l2.ZL1 � ZL2/ Š CL1�L2 is equipped with the inner product

hf ;gi ´

L1�1X
uD0

L2�1X
vD0

f .u; v/ g.u; v/

with associated norm kf k2´ hf ;f i. These equal the Frobenius inner product and
norm if an image is seen as L1 � L2-matrix. The translation operator is the cyclic
position shift

.Tkf /.u; v/ D f .u � k1 mod L1; v � k2 mod L2/

with k D .k1; k2/ 2 ZL1 � ZL2 . The modulation operator acts as

.Mlf /.u; v/ D f .u; v/ e
2�i.ul1=L1Cvl2=L2/

with l D .l1; l2/ 2 ZL1 � ZL2 , and we have the relation Ml D F�1TlF where
F is the 2D DFT of (4.1). The STFT of f 2 CL1�L2 with respect to the window
g 2 CL1�L2 is now

.Vgf /.k; l/ D hf ;MlTkgi

with .k; l/ 2 ZL1 � ZL2�4ZL1 � ZL2 . We’ll write .x;!/ instead of .k; l/ to emphasize
their meaning as position and frequency.

We want to keep in mind that the parameter x in the STFT Vgf .x;!/ is only
a shift parameter for the window g. If we consider the STFT as some subsequent
procedure, we’re slowly moving the window over the signal and compute the Fourier
transform for each cutout, just as it is given by equation (1.17). Like in our approach
to understand 2D frequencies, we could fix a certain shift x D x0 and look at the
function ! 7! Vgf .x0;!/, what provides the complete picture on the 2D Fourier

4In signal analysis, the notation G vs. yG can be ignored and just indicates whether we’re on the
position or the frequency domain.



4.4. STFT of Discrete Images 55

domain for that certain window position Tx0g. Varying the fixed shifts x will now
change the look of the STFT as a function in !.

The second possibility would be to fix the modulation parameter ! D !0 and
consider the STFT as a function x 7! Vgf .x;!0/, providing a complete picture for
the 2D signal space with respect to that single frequency. Varying ! will change the
behavior of the STFT as a function in x. If we look back at equation (1.19), we
see that this corresponds to a convolution of the image with a modulated window
function and a pointwise multiplication with the pure oscillation x 7! e�2�ihx;!i.

By these approaches, the STFT of an image can be visualized as a bunch of single
images, either showing the complete Fourier domain for certain shift positions of the
2D window, or showing the complete image domain for certain modulations. To get
a full picture, the single Fourier images can be stacked to form a block image, where
every Fourier image is placed according to the respectively considered shift position.
The huge image would represent the position domain, and each block represents the
whole frequency domain for a certain position of the window. The second approach
would be the other way round: The convolution images are stacked to form a huge
block image representing the frequency domain, and every block shows the complete
position domain for the corresponding modulation.

Rather than really trying to construct these huge block images, we show single
samples of the STFT of our zebra image. We mentioned previously that the STFT is
too redundant anyway, so we try to construct such a picture later when we’re doing
Gabor analysis of images. In the case of the zebra, a 480 � 480-image, the full STFT
image would have a size of .480�480/�.480�480/what contains more than 53 billion
entries.

What we haven’t considered yet is the choice of an appropriate 2D window func-
tion. For a first approach we want to compute the STFT using the Gaussian win-
dow like we defined it in Definition 1.5.1. As it is an exponential function, the d -
dimensional Gaussian '.x/ D e��x2 D e��x

2
1 � � � e��x

2
d can be expressed as a tensor

product '.x1; : : : ; xd / D '.x1/˝� � �˝'.xd / of d one-dimensional Gaussians, similar
to our discussion of d -dimensional oscillations. We will discuss 2D windows in more
detail in the next section.

Figure 4.9 shows an example for the first possibility of the two mentioned ap-
proaches: The three images on the left show different shifted 2D Gaussians applied to
the zebra image. The cutouts almost look like modulated Gaussians, but the visible
line patterns are those of the body of the animal. We could therefore expect that their
2D-FFTs almost look like shifted 2D Gaussians in the Fourier domain. The three im-
ages on the right show the corresponding 2D-FFTs of the images on the left. Indeed,
we see two symmetrically positioned spots in the Fourier images, similar to shifted
Gaussians, and the positions correspond to the orientations of the line patterns in
the image domain. The symmetry is due to the real-valued signal. But additionally
to the shifted spots we see an unshifted Gaussian in the center due to the fact that the
line patterns in the original images did not simply oscillate between �1 and 1.

Figure 4.10 implements an example for the second possible approach: We see dif-
ferent 2D convolutions of the zebra image with modulated 2D Gaussians. Instead
of simply showing shifted Gaussians in the Fourier image, it’s more interesting to
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FIGURE 4.9: Localized Fourier transforms of zebra. The images on the left show
the zebra windowed by Gaussians, using an inverted colormap. The images on the
right show the corresponding 2D-FFTs; the Gaussians in the centers occur because
the values in the line patterns do not simply oscillate between �1 and 1.
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FIGURE 4.10: Convolutions of zebra with modulated 2D Gaussians. Rather than
simply showing shifted Gaussians on the Fourier domain, it’s more interesting to see
the modulations that occur in the image domain due to the shifts. The images on the
right show the inverse FFTs after windowing, yielding convolutions of the zebra with
the corresponding modulated Gaussians on the left.
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FIGURE 4.11: Common windows for 1D signal analysis. The Hamming window
cannot be zero-extended, but the Hann window can. The Kaiser window allows a
scaling parameter.

show the emerging modulations of the window in the image domain, visualized by
the images on the left. The images on the right show the mentioned convolutions,
indicating where and in what amount the zebra image responds to different pattern
densities and orientations; the oscillation x 7! e�2�ihx;!i of (1.19) was not applied.

Before we are looking at how to implement Gabor expansions of images, we have to
look at how 2D windows can be constructed, as additional properties for 2D windows
emerge that are not given in the 1D case.

4.5 2D Window Functions

In the previous section we computed (parts of) the STFT of an image by using the 2D
Gaussian function as a window. It is given as a tensor product of two 1D Gaussians,
and this provides one way to construct 2D windows by considering 1D windows.
Therefore we will give a brief summary of commonly used 1D window functions and
how one can construct 2D windows by taking tensor products.

4.5.1 Definition The H a m m i n g w i n d o w wHm of length L is defined as

wHm.j /´ 0:53836 � 0:46164 cos
�
2�j

L � 1

�
; j 2 hLi :

The H a n n5 w i n d o w wHn of length L is defined as

wHn.j /´
1

2

�
1 � cos

�
2�j

L � 1

��
; j 2 hLi :

These two discrete-time windows look very similar, reaching their maximum at the
center j D

�
L
2

˘
and declining to the borders, with the difference that the Hamming

window does not reach zero at the borders. The only possibility to decrease their
essential support is to zero-embed them, what will therefore only work with the Hann

5Named after J. v. Hann and sometimes confusingly enough referred to as Hanning window, from
“to Hann a signal”.
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FIGURE 4.12: Separable 2D windows might be concentrated along the axes. The
shown windows are tensor products of Gaussians that have been stretched by a factor
of 5

3
or shrunken by 3

5
, respectively.

window. To zero-embed means to construct the window for some lengthLw < Lwith
L � Lw D 2n and define the actual window w of length L as

w.j /´

(
wHn.j � n/ j � n 2 hLwi

0 else.

See subfigures 4.11a and 4.11b for graphs of a Hamming and a zero-embedded Hann
window.

To define another commonly used window, we first need to mention Bessel func-
tions.

4.5.2 Definition The B e s s e l f u n c t i o n of the first kind of order ˛ 2 Z, denoted
by J˛.x/, is defined by its Taylor series expansion around x D 0 as

J˛.x/´

1X
mD0

.�1/m

mŠ�.mC ˛ C 1/

�x
2

�2mC˛
:

4.5.3 Definition The K a i s e r w i n d o w wK
ˇ

of length L and with shape parameter
ˇ 2 R is defined as

wK
ˇ .j /´

J0

�
�ˇ

q
1 �

�
2j

L�1
� 1

�2�
J0.�ˇ/

; j 2 hLi :

By construction, this window also peaks at the center j D
�
L
2

˘
and decays ex-

ponentially to the borders. The window becomes narrower for increasing jˇj. See
subfigure 4.11c for graphs of Kaiser windows with different shape parameters.

As it is obvious that the previously defined windows look more or less like stretched
or shrunken Gaussians, we will mostly restrict to Gaussian-like functions for our
calculations, as these minimize the time-frequency localization.
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FIGURE 4.13: A non-separable 2D window and its Fourier transform. The win-
dow is a 2D Gaussian, stretched horizontally by 5

3
and shrunken vertically by 3

5
,

then rotated by 3
8
� . Preserving the uncertainty principle, its Fourier transform shows

increased localization in the direction where the window had narrow support and
decreased localization where it had wide support.

Using these windows now makes it possible to define 2D windows by taking the
tensor product of two 1D windows. I.e., to get a window w 2 l2.ZL1 � ZL2/ one
takes a window w1 2 l2.ZL1/ of length L1 and a window w2 2 l2.ZL2/ of length L2
and defines

w.j; k/´ .w1 ˝ w2/.j; k/´ w1.j /w2.k/ ; j 2 ZL1; k 2 ZL2 :

Figure 4.12 shows what such separable windows could look like. Each of the two
incorporated windows evolves along one of the two dimensions of their tensor prod-
uct, and due to their appearance as symmetrically stretched or shrunken Gaussian-
like functions, their tensor product always appears symmetric to the axes. The sep-
arable 2D window is narrow in that dimension that incorporated a narrow window,
and it has wide support where a wide window was used. Corresponding to this, if
the Fourier transform of such a 2D window is computed, it satisfies the uncertainty
principle and will show a 2D window on the Fourier domain that has wide support
in that dimension that used a narrow window, and it shows narrow support where a
wide window evolved. If the 2D window was wide in both dimensions, its Fourier
transform has narrow extension in both dimensions, and vice versa.

If one takes two Gaussians of lengthL1 andL2 withL1 ¤ L2, their tensor product
appears in elliptic shape, but is of course still invariant under the Fourier transform
on l2.ZL1 � ZL2/.

Using this procedure makes it possible to construct 2D windows that have different
time-frequency resolutions for the horizontal or vertical dimension only. However,
this might be rather limiting, as images are usually not separable in that sense. To
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FIGURE 4.14: Frequency-shifts of a non-separable window. If the window has a
higher frequency resolution in a certain direction (b), it loses the ability for good lo-
calization of the corresponding oscillations in the image domain (a). On the other
hand, if frequency resolution is not important for a certain orientation (d), the win-
dow is capable of detecting correspondingly oriented edges (c).
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optimally adapt a 2D window to a class of images, the need for a non-separable 2D
window might arise, meaning that it can no longer be separated into its two dimen-
sions and therefore cannot be composed as a tensor product of two 1D functions,
but has to be defined as a whole on the image domain. Where separable windows
allow easier computational procedures, this advantage will get lost for non-separable
windows, what we will later examine in more detail.

Figure 4.13 shows an example for a non-separable 2D window. It is a Gaussian-like
function defined on the image domain, but shows a stretch in a direction that is not
oriented along one of the image dimensions. Additionally it has been shrunken by
the same factor in the direction perpendicular to the first one, ensuring that it covers
the same area on the image domain like the unmodified 2D Gaussian, shown in Fig-
ure 4.8. Because of that, its Fourier transform will not cover an overall smaller area in
the Fourier domain than in the image domain. But due to the uncertainty principle,
its extension will increase into that dimension where the window was narrow in the
image domain, and it decreases where the window was stretched.

The shape of 2D windows can therefore be adapted to the dominating pattern ori-
entations in the image signal. Choosing a certain stretch direction of the window
decreases its position resolution in that direction and drops at the same time more
frequencies of a certain orientation in the Fourier domain, enabling it to have a bet-
ter frequency resolution for oscillations that evolve along the stretch direction of the
window. On the opposite the perpendicular line patterns are not that much involved.
Figure 4.14 shows how the window gets modulated in the image domain when se-
lecting a frequency region in the direction that is best resolved by the window. The
line patterns are then oriented in a way that makes it impossible to localize them in
a well manner in the image domain. If for the other case frequency orientations are
selected that cannot be well resolved, one gets the possibility of a good line pattern
localization in the image domain.

Now that we have studied the STFT of images and the behavior of 2D window
functions, we want to examine how Gabor expansions of images can be obtained. It
will turn out that the case of separable windows yields a very handy computation of
both the 2D Gabor transform and the dual 2D Gabor windows. And the possibility
for separable or non-separable sampling subgroups will show an interplay with the
(non-)separability of the possible windows.



Chapter 5

Image Representation by Gabor
Expansion

We saw that Gabor analysis is a certain approach of doing localized Fourier analysis,
where the main design freedom is the choice of (a) the time-frequency lattice and
(b) the analysis prototype. The type of sampling lattice can be distinguished into a
separable or non-separable case, where the first one can be described by the choice
of lattice constants ˛; ˇ > 0. In the case of multidimensional signals we indicated in
the previous chapter that another flavor of (non-)separability comes up, namely that
of the analysis atom itself. However, in the language of group theory this distinction
does not emerge at all, but for the ease of numerical implementations these terms
become relevant.

It turns out that in the twofold-separable case, i.e. where the d -dimensional analy-
sis window is a tensor product of d one-dimensional functions g D g1˝� � �˝gd and
the sampling lattice ƒ is a product ƒ D

Qd
iD1 ˛iZLi �

Qd
iD1 ˇiZLi , the dual Gabor

window  is given as a product  D 1˝ � � � ˝ d as well, where the computation re-
duces to finding the 1D duals i of the 1D atoms gi with respect to the corresponding
2D time-frequency lattices ƒi D ˛iZLi � ˇiZLi .

But as multidimensional signals such as 2D images are generally not separable,
both the analysis window and the sampling lattice might have to be matched to the
class of signals and might thus be non-separable. These cases are well-described in
the language of group theory, cf. [FSC95], [FKPS96], [Grö98]. And as indicated in
[Str97], the factorizations of the Gabor frame matrix mentioned in Section 3.3 can
still be obtained, i.e., extending Theorem 3.3.5 to two dimensions means that Sg can
be factorized into a block diagonal matrix where the blocks themselves are again
block diagonal. Thus, the questions about how to obtain the dual Gabor frame or
the synthesis prototype is answered by the theory.

Our aim here is to show how the results can be applied to the case of image signals.
Gabor expansions of finite discrete 2D signals aren’t quite different to those of finite
discrete 1D signals. In a more general notation, there isn’t a difference at all. But for
taking the step to numerical implementations, the need for a more explicit notation
raises.
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5.1 2D Gabor Expansions

As already indicated in the previous chapter, images of size L1 � L2 evolve on the
additive Abelian group G D ZL1 � ZL2 , and the image space l2.G / is isomorphic to
CL1L2 . The position-frequency space (PF-space) is

G � yG D ZL1 � ZL2 �4ZL1 � ZL2 :

In signal analysis, the notation G vs. yG just indicates whether we’re on the position or
the frequency domain.

A Gabor system G .g; ƒ/ consists of TF-shifts MlTkg of a window g 2 CL1�L2 ,
where .k; l/ are elements of a sampling subgroup ƒ E ZL1 � ZL2 �4ZL1 � ZL2 . The
Gabor coefficients of the image f 2 CL1�L2 are defined as

ck;l ´ hf ;MlTkgiF ; .k; l/ 2 ƒ :

The Gabor system generates a frame if there are constants 0 < A � B <1 such that

Akf k
2
F �

X
.k;l/2ƒ

ˇ̌
hf ;MlTkgiF

ˇ̌2
� Bkf k

2
F 8f 2 CL1�L2 :

In the discrete case it’s easy to check whether a Gabor system is a frame or not: It
is a frame iff spanfMlTkgg.k;l/2ƒ D CL1�L2 . A necessary condition is that we have
more elements in ƒ than the dimension of the signal space, and therefore we need
L1L2 � jƒj � .L1L2/

2. The redundancy of the Gabor frame is

redƒ´
jƒj

L1L2
� 1 :

The Gabor frame operator

Sgf ´
X

.k;l/2ƒ

hf ;MlTkgiFMlTkg

commutes with TF-shifts determined by ƒ, and its minimum and maximum eigen-
values equal the frame bounds A and B.

Just as mentioned previously, the dual Gabor frame incorporates the same TF-
shifts, but applied to a dual window  2 CL1�L2 such that the expansion

f D
X

.k;l/2ƒ

hf ;MlTkgiFMlTk D
X

.k;l/2ƒ

hf ;MlTkiFMlTkg

holds for all f 2 CL1�L2 . The existence of that dual is guaranteed by the theory of
frames, and the calculation of the dual Gabor frame is done by the methods men-
tioned in Chapter 3 as well.

It turns out that the effort for obtaining Gabor expansions of images depends on
the structure of the given 4D sampling lattice. A (fully) separable position-frequency
lattice (PF-lattice) could be described by parameters ˛1; ˛2; ˇ1; ˇ2 > 0 such that ˛i
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and ˇi are divisors of Li and indicate the position and frequency shift parameters,
respectively. The set ƒ itself is given as

ƒ D
˚
.k; l/ D .k1; k2; l1; l2/ D .˛1u1; ˛2u2; ˇ1v1; ˇ2v2/

ˇ̌
ui 2

˝
Li
˛i

˛
; vi 2

˝
Li
ˇi

˛	
:

It could therefore be described as a product ƒ D ƒ1 �ƒ2 with ƒi D ˛iZLi � ˇibZLi .
But what does a general 4D lattice look like? What’s the structure of its adjoint

lattice? One has to notice that for multidimensional signals the separability of a lattice
could have various “depths”: If it is a productƒ D ƒ1�ƒ2 in the case of 2D signals,
this doesn’t necessarily mean that the sublattices ƒi are separable themselves like
ƒ D ˛1ZL1 � ˇ1bZL1 � ˛2ZL2 � ˇ2bZL2 as described above. Indeed, one of those
sublattices could be non-separable, e.g. ƒ1 E ZL1�bZL1 . Or furthermore, bothƒ1 or
ƒ2 could be non-separable 2D lattices in their respective 2D TF-planes, but the 4D
lattice is still a product ƒ1 � ƒ2. So, one flavor of separability is that of looking at
two independent signal spaces CL1 and CL2 on which the corresponding lattices ƒ1
and ƒ2 might still be arbitrary subgroups of the respective TF-planes.

However, there is another possibility for describing ƒ as a product of subgroups,
namely by separating the position domain ZL1 � ZL2 from the frequency domain
4ZL1 � ZL2 . I.e., a 4D PF-lattice could be a product ƒ D � � y� with � E G D

ZL1 � ZL2 and y� E yG D 4ZL1 � ZL2 . These subgroups could both be arbitrary, or
one or both could be separable, e.g. ƒ D ˛1ZL1 � ˛2ZL2 � y� for non-separable y�.

And finally, there could of course be truly non-separable subgroups ƒ E G � yG .
In arbitrary dimensions, this mixture of separability and non-separability increases
correspondingly.

As already mentioned, there is a second notion of (non-)separability for multidi-
mensional signals, namely that of the Gabor window, what adds another degree of
complexity to multidimensional Gabor expansions. It seems that the possible combi-
nations of both notions produce an order corresponding to increasing difficulty for
computational implementations of 2D Gabor expansions. We include the fundamen-
tal cases for 1D signals in this list, as they are being reverted to:

(1) 1D window on a separable (2D) TF-lattice (traditionally),

(2) 1D window on a non-separable TF-lattice (covered in Chapter 3),

(3) 2D separable window on a fully separable (4D) PF-lattice (reverts to case (1)),

(4) 2D separable window on a partially non-separable PF-lattice (cases (1) or (2)),

(5) 2D non-separable window on a fully separable PF-lattice,

(6) 2D non-separable window on a partially or truly non-separable PF-lattice.

The following sections in this chapter reflect this ordered list, and we will show how
to compute Gabor expansions for each of the mentioned cases. The traditional cases
(1) and (2) have been covered in the previous chapters, and we start with case (3) of
twofold separability.
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5.2 Separable Atoms on Fully Separable Lattices

In this section we want to show why the case of a 2D separable window g D g1 ˝ g2
and a fully separable PF-lattice

ƒ D ƒ1 �ƒ2 D ˛1ZL1 � ˇ1bZL1 � ˛2ZL2 � ˇ2bZL2
allows for efficient Gabor expansions. There is the question whether this case can
be reduced to finding a dual 1D window 1 for the 1D window g1 on the TF-lattice
ƒ1 E ZL1 �bZL1 and a dual 1D window 2 for the 1D window g2 on the TF-lattice
ƒ2 E ZL2 �bZL2 and obtaining the dual 2D window  for g on the lattice ƒ simply
by  ´ 1 ˝ 2. Rather than trying to find a 2D Gabor system and trying to do
such a separation, we want to see whether the product of two given 1D Gabor frames
for two given signal spaces CL1 and CL2 could be a frame for the product space
CL1 ˝CL2 . The following Lemma shows that this is possible in a general way.

5.2.1 Lemma Let H D H1 y̋H2 be the tensor product of two Hilbert spaces H1 and
H2 that is a Hilbert space with respect to the inner product˝

e1 ˝ e2; f1 ˝ f2
˛
H
´ he1; f1iH1

he2; f2iH2
8ei ; fi 2Hi :

Let femgm2Z � H1 be a frame for H1 and ffngn2Z � H2 a frame for H2. Then the
collection fem ˝ fngm;n2Z is a frame for H1 ˝H2.

P r o o f . [FG94, 8.18] Let S1 and S2 be the frame operators of the two frames, i.e.,
S1g D

P
m2Zhg; emiH1

em and S2h D
P
n2Zhh; fniH2

fn for g 2 H1 and h 2 H2. If
we denote the frame operator on H1˝H2 with respect to the system fem˝fngm;n2Z

by S and apply it to g ˝ h 2H1 ˝H2, we get

S.g ˝ h/ D
XX
m;n2Z

˝
g ˝ h; em ˝ fn

˛
H
em ˝ fn

D

XX
m;n2Z

hg; emiH1
hh; fniH2

em ˝ fn

D

 X
m2Z

hg; emiH1
em

!
˝

 X
n2Z

hh; fniH2
fn

!
D S1g ˝ S2h :

Thus we can define S.g ˝ h/ D .S1 ˝ S2/.g ˝ h/ ´ S1g ˝ S2h, and the frame
operator is invertible by S�1 D S�11 ˝ S�12 . This implies that the corresponding
system is indeed a frame with bounds A1A2 and B1B2 if Ai and Bi are the respective
frame bounds in Hi .

5.2.2 Corollary If H1 D CL1 and H2 D CL2 in Lemma 5.2.1 and femgm2hN1i � CL1

and ffngn2hN2i � CL2 are frames for CL1 and CL2 , respectively, then the sequence
fem ˝ fng.m;n/2hN1i�hN2i is a frame for CL1 ˝ CL2 , where .g ˝ h/.j; k/ ´ g.j / h.k/

for g 2 CL1 and h 2 CL2 . The joint redundancy is N1N2
L1L2

� 1.
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P r o o f . We only have to show that the tensor product of elements in the Hilbert
spaces really corresponds to the tensor product of vectors. For fi ; gi 2 CLi we have

hf1; g1iCL1 hf2; g2iCL2 D

 
L1�1X
jD0

f1.j / g1.j /

! 
L2�1X
kD0

f2.k/ g2.k/

!

D

L1�1X
jD0

L2�1X
kD0

f1.j / f2.k/ g1.j / g2.k/

D

L1�1X
jD0

L2�1X
kD0

.f1 ˝ f2/.j; k/ .g1 ˝ g2/.j; k/

D
˝
f1 ˝ f2; g1 ˝ g2

˛
CL1˝CL2

:

The redundancy value is clear due to the number of elements in the frame, what is
N1N2, and the dimension of CL1 ˝CL2 Š CL1L2 .

These results hold for arbitrary frames, and therefore for Gabor frames as well. As
our image space is such a tensor product, we could define 2D Gabor windows g 2
CL1�L2 by g D g1˝g2 for gi 2 CLi . As we’re looking at the case whereƒ D ƒ1�ƒ2,
we take two Gabor frames

˚
g
.i/

ki ;li

	
.ki ;li /2ƒi

´ fMliTkigig.ki ;li /2ƒi � CLi with frame

operators Si and use the set of products
˚
g
.1/

k1;l1
˝g

.2/

k2;l2

	
.k;l/2ƒ

� CL1˝CL2 as frame
for the image space with frame operator S1 ˝ S2.

The question remains whether this product of Gabor frames is really a Gabor frame
for the image space, and not just any kind of frame. We have to show that the product
of 1D TF-shifts form 2D position-frequency shifts (PF-shifts) of the 2D window g.
Trivially, this is the case for position shifts, as 1D shifts modulo L1 and L2 become
corresponding 2D shifts on the image domain ZL1 � ZL2 . And for the modulations
we had already mentioned in the previous chapter that 2D modulations can be ex-
pressed as tensor products of 1D modulations. As a roundup, we really have

Ml1Tk1g1 ˝Ml2Tk2g2 DM.l1;l2/T.k1;k2/.g1 ˝ g2/ 8.k1; k2/; .l1; l2/ 2 ZL1 � ZL2

as building blocks for our 2D Gabor frame.
The canonical dual of g with respect to that frame is now given as ı D S�1g D

S�11 g1 ˝ S
�1
2 g2 D ı1 ˝ 

ı
2 . The calculation of 1D dual windows on separable TF-

lattices had been well-implemented in MATLAB by NuHAG. But we didn’t yet have
an eye on how to efficiently obtain the Gabor coefficients of an image f 2 CL1�L2

by
ck;l ´ hf ;MlTkgiF :

What does the Gabor matrixCg look like if it is to be applied to an image f 2 CL1�L2

that could be considered as an L1 � L2-matrix? Sure, f must be seen as a vector in
CL1L2 and Cg as an N1N2 � L1L2-matrix if the number of elements in the 2D frame
is N1N2 and the coefficient vector is c 2 CN1N2 . In general, f cannot be assumed to
be separable, thus the only thing that seems to ease our computation is the structure

ck;l D
˝
f ;Ml1Tk1g1 ˝Ml2Tk2g2

˛
F :
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If we think of the 1D case with some f 2 CL and a general frame fgj gj2hN i � CL,
the coefficients are obtained by

c D Cf D
�
hf; gj i

�
j2hN i

D .cj /j2hN i ;

and for Gabor frames, c D .ck;l/.k;l/2ƒ with ƒ E ZL � cZL is actually a coefficient
matrix in CL�L with jƒj D N � L2 non-zero entries. But due to simply stacking the
vectors fgk;lg.k;l/2ƒ D fgj gj2hN i � CL in the coefficient matrix

C D

�
g�0
:::

g�N�1

�

2 CN�L ; (5.1)

one just gets a “flat” c 2 CN . In our 2D case, the Gabor coefficient even consists of
entries ck;l D ck1;k2;l1;l2 . We also want to take the approach by using general frames
fgmgm2hN1i � CL1 and fhngn2hN2i � CL2 , and look at the product frame fgm˝hngm;n
for CL1 ˝ CL2 . We also reduce the coefficient c D

�
c.m; n/

�
m;n
2 CN1N2 to a vector

of form

c D
�
c.0; 0/; c.0; 1/; : : : ; c.0;N2 � 1/; c.1; 0/; : : : ; c.1;N2 � 1/; : : :

: : : ; c.N1 � 1; 0/; : : : ; c.N1 � 1;N2 � 1/
�T

such that we can try to find the corresponding coefficient matrix C 2 CN1N2�L1L2

that can be applied to f 2 CL1L2 , where

f D
�
f .0; 0/; : : : ; f .0; L2 � 1/; f .1; 0/; : : : ; f .L1 � 1;L2 � 1/

�T
: (5.2)

Now we can look at the .m; n/-th, or rather, .mN2 C n/-th entry of the coefficient:

.Cf /m;n D c.m; n/ D hf; gm ˝ hniCL1L2

D

L1�1X
uD0

L2�1X
vD0

f .u; v/ .gm ˝ hn/.u; v/

D

L1�1X
uD0

L2�1X
vD0

f .u; v/ gm.u/ hn.v/ : (5.3)

Now that we are able to split the indices u and v for the frame elements, we can
consider the order in (5.2) and get

.Cf /m;n D
�
gm.0/ h

�
n gm.1/ h

�
n � � � gm.L1 � 1/ h

�
n

�
f D .C /m;nf ;

where .C /m;n is the .m; n/-th or .mN2 C n/-th line of C and contains L1L2 entries.
The line vectors fh�ngn2hN2i form the frame matrix C2 2 CN2�L2 like in (5.1). If we
look at the range of N2 lines f.m; 0/; : : : ; .m;N2 � 1/g, we are able to express the
corresponding segment of C as

.C /mIn2hN2i D
�
gm.0/ C2 gm.1/ C2 � � � gm.L1 � 1/C2

�
;
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what finally gives us the result that the frame matrix of the product frame is the
Kronecker product

C D C1 ˝ C2 2 CN1N2�L1L2

for Ci 2 CNi�Li .
Thus, one possibility for obtaining the Gabor coefficients of a product frame is

calculating the product C1˝C2 and apply it to the image f 2 CL1L2 . If we’re taking
our zebra test image of size 480 � 480, that means we’d have two frame matrices of
sizeN1�480 andN2�480, and the minimal redundancy of 1makes the frame matrix
of the product frame a .480 � 480/ � .480 � 480/-matrix, what contains more than
53 billion entries. If we use double precision for numerical computations, every entry
takes 8 bytes, and so we’d end up with a huge matrix allocating at least more than
395 Gigabyte, what is way too much for today’s computers. Contrary to this, storing
C1 and C2 alone would just take about 3.5 Megabyte for minimal redundancy. And
we’re not even thinking of doing a pseudoinversion of the huge matrix, whereas it is
enough to pseudoinvert the matrices Ci , as we’ll see below.

Nevertheless, we want to see whether we can compute c D .C1˝C2/f in a cheaper
way by applying the frame matrices Ci without computing their Kronecker product.
As images aren’t stored as vectors f 2 CL1L2 but rather as matrices f 2 CL1�L2

in numerical software like MATLAB or Octave, we could try to get the coefficient
c D

�
c.m; n/

�
m;n
2 CN1�N2 more directly.

5.2.3 Proposition Given two frames fgmgm2hN1i � CL1 and fhngn2hN2i � CL2 with
frame matrices Ci 2 CNi�Li , then the frame coefficient c 2 CN1�N2 for the image
f 2 CL1�L2 with respect to the product frame fgm ˝ hng.m;n/2hN1i�hN2i is given as

c D C1f C
T
2 D (5.4)

D

 
g0.0/ ��� g0.L1�1/

:
:
:

:
:
:

:
:
:

gN1�1.0/ ��� gN1�1.L1�1/

! 
f .0;0/ ��� f .0;L2�1/

:
:
: ���

:
:
:

f .L1�1;0/ ��� f .L1�1;L2�1/

!�
h0.0/ ��� hN2�1.0/

:
:
: ���

:
:
:

h0.L2�1/ ��� hN2�1.L2�1/

�
:

P r o o f . C1f is a matrix in CN1�L2 , and its m-th line contains the L2 entries

.C1f /m D
�PL1�1

uD0 f .u; 0/ gm.u/ � � �
PL1�1
uD0 f .u;L2 � 1/ gm.u/

�
:

If it is applied to the n-th column of CT
2 2 CL2�N2 , we get the coefficient entry

c.m; n/ D .C1f /m.C2/
T
n

D

L2�1X
vD0

L1�1X
uD0

f .u; v/ gm.u/ hn.v/

D hf ; gm ˝ hniF

due to equation (5.3), yielding that the coefficient matrix really contains the desired
entries.
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Note that similar thoughts reveal the fact that the 2D-DFT (4.1) of an image f 2
CL1�L2 can be obtained by the matrix multiplication

Ff D FL1f FL2 2 CL1�L2 ; (5.5)

where FLi 2 CLi�Li are the (symmetric) Fourier matrices (3.10) of order Li .
We saw in Chapter 3 that if the synthesis operation is to be done by f D C �c for

given f 2 CL and a frame C 2 CN�L, one solution is obtained by c D .C �/�f

with a right-inverse for C � such that IL D SS�1 D C �C.C �C/�1 D C �.C �/�,
making the pseudoinverse of the synthesis operator the matching analysis operator.
C �.C �/� is the orthogonal projection onto the range of the desired synthesis operator.
One notices that due to .C �/� D .C �/� we already have IL D .C �C/� D C �C , the
orthogonal projection onto ranC � [Chr03, 1.5.1]. Thus, the role of the operators can
be interchanged, meaning that C � is the matching synthesis operator for the analysis
operator C .

If we again interpret signals f 2 CL1 ˝ CL2 as f 2 CL1L2 and take a product
frame fgm˝hngm;n with analysis operator C1˝C2, we get IL1L2 D C

�.C1˝C2/ and
IL1L2 D IL1 ˝ IL2 D .C

�
1C1/˝ .C

�
2C2/, yielding that the matching synthesis operator

is C � D C �1 ˝ C
�
2 . Due to Proposition 5.2.3, we can thus reconstruct f 2 CL1�L2 by

f D .C
�
1C1/f .C

�
2C2/

T
D C

�
1 c .C

�
2 /

T (5.6)

because c D C1f CT
2 is in the range of the corresponding analysis operator.

These results were derived for products of general frames and therefore also hold
for products of Gabor frames. Given two Gabor frames fMliTkigig.ki ;li /2ƒi � CLi

on subgroupsƒi E ZLi �bZLi and with analysis operators Cgi , we get their synthesis
operators by C �gi D C �

ı
i

with ıi ´ S�1gi gi . The product of those two frames is
the Gabor frame fMlTkgg.k;l/2ƒ1�ƒ2 consisting of PF-shifts of the window g D

g1 ˝ g2 2 CL1�L2 on the lattice ƒ D ƒ1 � ƒ2. The dual window to g is given by
ı´ ı1 ˝ 

ı
2 . Due to (5.4) and (5.6), the 2D Gabor analysis operation for the image

f 2 CL1�L2 is obtained by
c D Cg1f C

T
g2

(5.7)

and a possible reconstructing synthesis operation by

f D C �ı1
c .C �ı2

/T D Cı1
T
c Cı2 ; (5.8)

yielding that it is enough to obtain the two duals ıi .
Figure 5.1 shows the construction and look of the separable dual 2D window of a

2D Gaussian window on a fully separable PF-lattice.

5.2.1 Efficient Gabor Expansion by Sampled STFT

In the case of a separable 2D atom and a fully separable PF-lattice we can make
use of the fast 1D STFT implementation by NuHAG to obtain the Gabor analysis
coefficient c D Cg1f C

T
g2

and the Gabor reconstruction f D C �
ı1
c.C �

ı2
/T for a given
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(b) Lattice ƒ2 D 8Z160 � 16Z160
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FIGURE 5.1: 2D separable window and its dual on a fully separable lattice
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image f 2 CL1�L2 . These matrix multiplications from the left and right could still be
rather expensive, so we want to see to what extent the Gabor coefficient c is obtained
by a finite number of sampled 1D STFT operations, where the sampling points are
determined by shift parameters ˛1; ˛2 and modulation parameters ˇ1; ˇ2.

If we remember the 1D case, the Gabor frame Cg for CL by a window g 2 CL

involves a separable lattice ƒ D ˛ZL � ˇZL with jƒj D N D L2

˛ˇ
, and for arbitrary

f 2 CL we have

.Cgf /k;l D ck;l D hf;MˇlT˛kgiCL D

L�1X
uD0

f .u/MˇlT˛kg.u/ D Vgf .˛k; ˇl/

for k 2
˝
L
˛

˛
and l 2

˝
L
ˇ

˛
, what is merged to a flat vector of length N if the frame is

seen as a matrix Cg 2 CN�L. In the 2D case, if we consider f D .f0; : : : ; fL2�1/

with fj ´
�
f .0; j /; : : : ; f .L1 � 1; j /

�T
, then bj D Cg1fj acts as the Gabor analysis

operation for all fj 2 CL1 with coefficients bj 2 CN1 for all j 2 hL2i. The operation
b D Cg1f collects these in a matrix b D .b0; : : : ; bL2�1/. If we express its k-th line as
a line vector qT

k
´ .b/k D .b0.k/; : : : ; bL2�1.k//, we get

Cg1f D b D q
T
D

�
qT
0
:::

qT
N1�1

�

2 CN1�L2 :

The complete 2D Gabor analysis operation is now c D qTCT
g2
D .Cg2q/

T, and this is
just the Gabor analysis operation of the vectors qk 2 CL2 for k 2 hN1i with respect
to the Gabor frame Cg2 .

All in all, the 2D Gabor analysis operation in the twofold-separable case can be
obtained by first computing L2 1D STFT-operations of output length N1 using the
parameters ˛1; ˇ1 followed byN1 1D STFT-operations of output lengthN2 using the
parameters ˛2; ˇ2. Of course, everything could be wound up from the other side:
Instead of considering .Cg1f /C

T
g2

, it could be done as Cg1.f C
T
g2
/, where one ends

up with L1 operations with output length N2 followed by N2 operations with output
length N1. These two possibilities shall be referred to as the Left-STFT and Right-
STFT implementations, respectively.

In the case of square images that allow for a single Gabor matrix Cg , the imple-
mentation that makes use of NuHAG’s stft.m turned out to be slightly faster for
the second approach, maybe due to fewer reshaping operations. However, if L1 < L2
(“landscape” format), there turned out to be a benefit when the image was transposed
to the “portrait” format and the roles of the Gabor frames were exchanged, i.e., the
equivalent implementation of cT D Cg2f

TCT
g1

was faster. Some results are given in
Table 5.1.
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Computing time (s˙ 0:1s)
L1 L2 redƒ1�ƒ2 Cg1f C

T
g2

L-STFT R-STFT Cg2f
TCT

g1

300 300 100 17.9 15.8 14.8 —
1500 1500 2.25 100.7 37.0 36.4 —
300 1500 15 86.0 39.4 12.6 20.2

1500 300 15 (20.2) 13.1 38.3 (86.0)

TABLE 5.1: Results of Experiment 5.2.1

As the reconstruction (2D Gabor expansion) is just a multiplication of the dual
Gabor matrices C �

ı
i

from the left and right of c, this task can be seen as a sequence of
1D Gabor expansions and can thus be obtained by a sequence of inverse 1D STFT-
operations as well, implemented by NuHAG as istft.m for product lattices. There
are again two ways: The first one is to doN1 inverse operations with output lengthL2
using the parameters ˛2; ˇ2 followed by N2 operations with output length L1 using
˛1; ˇ1. The second way exchanges Li and Ni correspondingly.

5.2.2 Visualizing a Sampled STFT of an Image

In the previous chapter we had the idea to visualize the full STFT of an image as
a large block image, where either each block fully represents the frequency domain
and the position of the blocks the position domain, or vice versa. As such an image
would become rather huge, we prefer to visualize only a sampled STFT instead. In
the case of a separable atom, this can be realized by obtaining the discrete 2D Gabor
transform by (5.7), where the two involved Gabor matrices Cgi consider a special
order of their Gabor frame elements MliTkigi .

For a Gabor frame fMlTkgg.k;l/2ƒ � CL given by a 1D window g 2 CL on a
separable lattice ƒ D ˛ZL � ˇZL with N D jƒj D L2

˛ˇ
elements, we want to say that

the Gabor frame elements are ordered with modulation priority if the Gabor frame
matrix Cg 2 CN�L is of the form

Cg D

ˇ
M0T0g

�

MˇT0g
�

:::

ML=ˇ�1T0g
�

M0T1g
�

:::

ML=ˇ�1T1g
�

:::

ML=ˇ�1TL=˛�1g
�



and that they are ordered with translation priority if the Gabor frame matrix is
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zCg D

ˇ
M0T0g

�

M0T˛g
�

:::

M0TL=˛�1g
�

M1T0g
�

:::

M1TL=˛�1g
�

:::

ML=ˇ�1TL=˛�1g
�



:

It is clear that we have zCg D PCg for a certain permutation matrix P 2 CN�N .
If we now take an image f 2 CL1�L2 and two Gabor frames fMliTkigig.ki ;li /2ƒi �

CLi on separable latticesƒi D ˛iZLi �ˇiZLi , we can take their product Gabor frame
for CL1�L2 and obtain the mentioned two possibilities for an STFT block image by
either considering the frame matrices Cgi or zCgi . The matrices Cgi are ordered by
modulation priority, and if c D Cg1f C

T
g2

, then c consists of L1
ˇ1
�
L2
ˇ2

-blocks

Xk1;k2 ´
�
hf ;M.l1;l2/T.k1;k2/gi

�
l1;l2

such that

c D

�
X0;0 � � � X0;L2=˛2�1
::: � � �

:::

XL1=˛1�1;0 � � � XL1=˛1�1;L2=˛2�1

�

:

The blocks Xk1;k2 equal the part
�
Vgf .k1; k2; l1; l2/

�
l1;l2

of the sampled STFT and
thus contain the whole (sampled) set of frequency shifts for a certain position shift
of the window g D g1 ˝ g2. The (sampled) frequency domain is therefore spanned
in each of the blocks Xk1;k2 , and their positions in c span the (sampled) position
domain. Each Xk1;k2 could be seen as a sampled “Fourier image” of the discrete
Fourier transform 5f � T.k1;k2/ Ng.

In the other case, where we’ve got Qc D zCg1f zC
T
g2

, the Gabor coefficient consists of
L1
˛1
�
L2
˛2

-blocks
Yl1;l2 ´

�
hf ;M.l1;l2/T.k1;k2/gi

�
k1;k2

such that

Qc D

�
Y0;0 � � � Y0;L2=ˇ2�1
::: � � � � � �

YL1=ˇ1�1;0 � � � YL1=ˇ1�1;L2=ˇ2�1

�

:

Here, the blocks Yl1;l2 equal the part
�
Vgf .k1; k2; l1; l2/

�
k1;k2

of the sampled STFT
and contain the corresponding set of position shifts for a certain frequency-shift of
g. The position domain is spanned in each of the blocks Yl1;l2 , and their positions
in Qc span the frequency domain. Each Yl2;l2 could now be seen as a (sampled) “con-
volution image” f �M.l1;l2/g

� that has been pointwise multiplied with the discrete
function .k1; k2/ 7! e�2�i.k1l1=L1Ck2l2=L2/, according to equation (1.19).
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FIGURE 5.2: Discrete 2D Gabor transform of zebra, modulation priority. The pic-
ture shows the absolute values of c D Cgf CT

g , where g is the 1D Gaussian of length
480 and Cg is the Gabor matrix for the lattice ƒ D 10Z480 � 6Z480, whose entries
were ordered with modulation priority.
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FIGURE 5.3: Discrete 2D Gabor transform of zebra, translation priority. The pic-
ture shows the absolute values of Qc D zCgf zCT

g , where g is the 1D Gaussian of length
480 and zCg is the Gabor matrix for the latticeƒ D Z480�60Z480, whose entries were
ordered with translation priority. The Gaussian blurred image in the middle has been
scaled into the colormap individually.
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FIGURE 5.4: Thresholding by separable atom on fully separable lattice

Figures 5.2 and 5.3 show examples for both cases using the zebra test image. As
it is a square image, we can take g1 D g2 and thus Cg1 D Cg2 . The first figure com-
poses the Gabor transform coefficient matrix as blocks of Fourier images. Clearly,
the overall image reflects the shape of the zebra. The “pixels” of that image contain
“Fourier jets” that are orthogonal to the edges at the corresponding position in the
original zebra image. Thus, the “jets” are oriented horizontally where e.g. the body
of the animal shows vertical line patterns. The second figure clearly shows blocks
of zebra images that have been convolved with modulated Gaussians. The absolute
values show the peaks as black spots within the respective image blocks.

5.2.3 Experiment: Gabor Coefficient Thresholding

Here we want to explore how the reconstructed image responds to a filtering of its
Gabor coefficients. This is a leering at the task of image compression or denoising.
We make use of the zebra test image again, so we’re able to take one Gabor frame for
C480 and use its tensor product as Gabor frame for the 480 � 480 image space. Our
experiment involves a Gaussian of length 480 as analysis atom g and a Gabor frame
matrix Cg on the separable lattice ƒ D 20Z480 � 16Z480 with N D jƒj D 720 sam-
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� 0 45.3789 140.2533 393.0024
jˆj 518400 38880 10368 3888

k Qf � f kF 7:7683 � 10�14 0.0998 0.1669 0.2462

TABLE 5.2: Results of Experiment 5.2.3

pling points, yielding a redundancy of 1.5 for the 1D frame and thus a redundancy
of 2.25 for the 2D frame on the fully separable 4D lattice ƒ � ƒ. The Gabor coef-
ficient of the square image f is obtained by c D Cgf C

T
g . Thresholding means to

put those (absolute) coefficient values to zero that are below a given threshold � > 0.
We want to sort the absolute coefficient values jc.m; n/j decreasingly and only use the
largest 7.5%, 2% and 0.75% for reconstruction. The minimum value of the remaining
coefficients determines the used threshold. A filter could be given as a 0-1-matrix
ˆ 2 CN�N such that the pointwise multiplication ˆ � c yields the desired filtered
coefficient matrix. ˆ is given as

ˆ.m; n/´

(
0 jc.m; n/j � �

1 else.

If ı ´ .C �gCg/
�1g is the canonical dual window to g on the lattice ƒ, the recon-

struction of the square image f is obtained via f D C �ıc.C
�
ı/

T. The calculation
of the dual is obtained by efficient MATLAB code developed by NuHAG, and it’s
therefore much cheaper to get C �ı than to compute C �g , what is equal to the former.

After the filter matrix ˆ has been obtained, the filtered reconstruction is given as

Qf D C �ı.ˆ � c/.C
�
ı/

T ;

and the (norm) difference between Qf and the original f can be measured. To enable
a better comparison with other atoms or lattices, this difference is calculated for the
(Frobenius-)normalized images only.

Figure 5.4 shows the resulting reconstructed images that used all, 7.5%, 2% and
only 0.75% of the largest coefficients. Subfigure 5.4a shows the reconstruction for
� D 0 and is therefore equal to the original. The remaining images indicate how
the filtering creates blur in the reconstructions. With increasing size of � , only the
most prominent patterns survive, and the distribution of the elements Tk

ı of the
dual frame on the image domain becomes visible. The obtained numerical values are
given in Table 5.2.

5.3 Separable Atoms on Partially Non-Separable Lattices

In this section we still want to consider separable Gabor atoms g D g1˝g2 2 CL1�L2

on lattices
ƒ D ƒ1 �ƒ2 E ZL1 �bZL1 � ZL2 �bZL2

where the lattices ƒi might or might not be separable subgroups ƒi E ZLi �bZLi .
To be more precise, at least one of those subgroups should be non-separable to speak
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(a) Quincunx lattice ƒ�1 (dr D dc D 12)
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(b) Quincunx lattice ƒ�2 (dr D dc D 16)
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(d) Dual ı2;� of Gaussian g2 on the quincunxƒ�2
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FIGURE 5.5: Separable 2D dual windows on partially non-separable lattices. The
dual ı1 on the separable lattice ƒ1 is that of Figure 5.1.
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FIGURE 5.6: Thresholding by separable atom on a product-quincunx lattice

of a case of a partially non-separable lattice, as it cannot be fully separated into four
1D subgroups of ZLi . However, for the described case we can carry over many of
the results from the previous section, because they hold for general frames. E.g., the
tensor product of two 1D Gabor frames fMliTkigig.ki ;li /2ƒi � CLi on non-separable
latticesƒi is still a Gabor frame for the image space CL1�L2 . The Gabor analysis and
synthesis operation is still given by multiplying the two Gabor matrices from the left
and right, (5.7) and (5.8), and the (canonical) dual window is still the tensor product
of the 1D duals. The other possibility of partial non-separability, where ƒ D � � y�

with non-separable � E ZL1 � ZL2 and y� E 4ZL1 � ZL2 , does not allow such a split
into two 1D Gabor frames.

Figure 5.5 shows how lattices, 1D windows and their 1D duals can be chosen in-
dependently for each dimension. The 2D dual in Subfigure 5.5e is composed of a
separable lattice for L1 and a quincunx lattice for L2. The 2D dual in Subfigure 5.5f
uses quincunx lattices for both dimensions.

Figure 5.6 shows how the reconstruction of the zebra image responds to a thresh-
olding of its Gabor coefficients on a product of two equal quincunx lattices that are
determined by dr D dc D 24. The thresholds use the same subset of coefficients as in
Experiment 5.2.3, but the redundancy is slightly higher at 2.78 instead of 2.25. The
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� 0 45.0879 132.5164 398.1295
jˆj 640000 48000 12800 4800

k Qf � f kF 2:3910 � 10�13 0.0968 0.1602 0.2410

TABLE 5.3: Results of thresholding on product-quincunx lattice

distribution of the 2D duals is not that evident anymore in the reconstructed images.
However, the results could still be beat on fully separable lattices by using an even
higher redundancy. Table 5.3 contains the obtained numerical values.

What also still works is visualizing the sampled STFT of an image as a block im-
age. If one of the involved 2D lattices is non-separable, there’s not the same set of
modulations used for all of the corresponding positions, but subsequently a different
subset of modulations. Maybe the non-separable lattice is even structured such that
only a single modulation is used at every position—a valid case. But the correspond-
ing Gabor matrix can still sort the TF-shifted elements prioritized by modulation or
translation, and the Gabor coefficient c D Cg1f C

T
g2

of the image f still gets a block
structure. However, the blocks might be of small width or height where only few
sampling points were involved.

One thing that ceases to work is the implementation of the 2D Gabor analysis
and synthesis by the help of the sampled 1D STFT, as the sampling points are not
distributed in grid shape anymore and thus cannot be described by shift parameters
˛1; ˛2 and modulation parameters ˇ1; ˇ2. There could of course be the idea to see
(2D) non-separable lattices as a finite union of shifts of a single grid. E.g., a quincunx
lattice with d D dr D dc could be seen as a grid dZL�dZL united with the same grid
shifted by

�
d
2
; d
2

�
. But the stft.m implementation had to be changed to support this

shift of the involved grid. If this is implemented, the complete Gabor coefficient can
be obtained as the union of the single analysis operations that incorporate the shifted
grids. The same holds for the reconstruction. The calculation of the dual window, of
course, has to consider the whole union of sampling points.

One important thing is different to the case of fully separable lattices: The (1D)
duals on general lattices might have significant non-zero imaginary parts, as indicated
in Section 3.4. Thus, if the 4D PF-lattice involves at least one non-separable 2D
lattice such that the 1D dual has a non-zero imaginary part, the tensor product of
that dual with the second dual gets a non-zero imaginary part as well. The values of
the emerging 2D dual could therefore be seen as evolving in four dimensions if C2 is
interpreted as R4. Figure 5.7 indicates that although the real part of the dual might
be rather similar to the original atom, its imaginary part lacks a “nice” behavior.
This also means that partial Gabor reconstructions that involve such dual windows
earn a significant non-zero imaginary part as well. Figure 5.8 indicates what such a
case does to a partial reconstruction of the zebra image. The colorbar to the right of
the visualized imaginary part of the obtained image indicates to what extent its color
values are far from being zero.
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(b) Non-separable lattice ƒ2
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(c) Dual ı1 on ƒ1 with non-zero imaginary part
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(d) Dual ı2 on ƒ2 with non-zero imaginary part
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FIGURE 5.7: Separable 2D dual window with non-zero imaginary part
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FIGURE 5.8: Partial reconstruction by dual with non-zero imaginary part

5.4 Non-Separable Atoms on Fully Separable Lattices

Non-separable windows are those which can only be defined considering the complete
image domain ZL1 � ZL2 , and not ZL1 and ZL2 separately. These cannot be described
as a tensor product g1˝g2 with gi 2 CLi anymore, but only generally as g 2 CL1�L2 .
With this case we lose the ability to consider two (1D) frames independently for each
dimension and we cannot apply two frame matrices independently to an image. It
appears that we have to stick to the known factorizations of Gabor matrices on (fully)
separable lattices with parameters ˛i ; ˇi , like denoted in Section 3.3, and we thus
cannot make use of the equidistantly sampled 1D STFT. However, under certain
conditions this case can be completely referred to a 1D case, as we’ll see below.

Figure 5.9 indicates an important thing about the redundancy. Sure, a redundancy
of jƒj

L1L2
� 1 is only a necessary condition, but it seems to be important to consider

the redundancy in each dimension. The involved window is a 2D Gaussian window
g 2 C120�160, stretched vertically by 4

3
, shrunken horizontally by 3

4
, then rotated

(counter-clockwise) by 3
8
� . Subfigure 5.9d shows its dual on a fully separable 4D

PF-lattice with overall redundancy 6:4. It was computed by Prinz’ implementation
ppdw2.m that makes use of the Gabor matrix factorizations. But although the re-
dundancy value gives the impression to be safe, it hides the fact that the involved
lattice is actuallyƒ D 10Z120� 12Z120� 5Z160� 5Z160, yielding the redundancy as
120
10�12
�
160
5�5
D 1 � 6:4. This shows that the vertical redundancy is critical, and the dual

has a bad localization in the vertical dimension. It is therefore necessary to make
sure that the redundancy is reasonably distributed among the dimensions. In this
sense, fully separable 4D lattices can always be considered as a product of two 2D
TF-lattices with independent redundancies, no matter what structure the 2D window
possesses.
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(d) Dual at vertically critical redundancy

FIGURE 5.9: A non-separable window and some duals on fully separable lattices.
The lattices ƒi are that of Figure 5.1. The lattices ƒ0i exchange ˛i with ˇi . The last
lattice has vertical redundancy 1 and horizontal redundancy 6:4.

5.4.1 2D Gabor Expansions by 1D Algorithms

Feichtinger and Kaiblinger published a result in [FK97] that whenever L1 and L2 are
relatively prime, i.e., gcd.L1; L2/ D 1, the calculation of a 2D dual to a 2D window
g 2 CL1�L2 can be obtained by calculating the 1D dual of a matching 1D window
�.g/ 2 CL1L2 . The key lies within a certain isomorphism of finite groups: If L1 and
L2 are relatively prime, then ZL1 � ZL2 is isomorphic to ZL1L2 . This means that any
image of size L1 �L2 can then be transformed to a vector of length L D L1L2 while
preserving the group-law, because l2.ZL1 � ZL2/ Š l2.ZL/, whose isomorphism we
denote by �. The mapping is determined in a way that

�
1
1

�
2 ZL1 � ZL2 corresponds

to 1 2 ZL, even more, we have
�
j
j

�
7! j for j 2 hminfL1; L2gi. More explicitly, the

isomorphism between the domains, denoted by �, is given by

�WZL1 � ZL2 ! ZL;

�
j

k

�
7! aL1k C bL2j mod L ;

where a; b 2 Z are chosen such that

aL1 C bL2 � 1 mod L :
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(a) 2D Gabor atom g of size 117 � 154
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on lattice .9; 11; 9; 11/
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(d) Dual �.g/ı on lattice 99ZL � 99ZL

FIGURE 5.10: Obtaining a dual 2D atom by the dual of its 1D extracted atom

Taking care of preserving the group-law one needs not compute a and b explicitly.
In other words, by moving on the diagonal of the image domain, i.e. along the

points
�
j mod L1
j mod L2

�
, one is able to span the complete image domain and return to the

starting point without touching any point twice if L1 and L2 are relatively prime.
Shifts on the image domain ZL1 � ZL2 correspond to shifts on ZL, as all points get
moved to a new position by the same amount. Similarly, any plane wave (pure 2D
oscillation) in l2.ZL1 � ZL2/ becomes a pure 1D oscillation in l2.ZL/. A 4D PF-
lattice determined by 2D shift parameters .˛1; ˛2/ and 2D modulation parameters
.ˇ1; ˇ2/ becomes a 2D TF-lattice with parameters ˛ D ˛1˛2 and ˇ D ˇ1ˇ2.

All in all, we’ve got two benefits: The 2D dual window to g 2 l2.ZL1 � ZL2/ on
the lattice determined by .˛1; ˛2; ˇ1; ˇ2/ can be obtained by mapping the window g
to its vector �.g/ 2 l2.ZL/, calculating its dual �.g/ı on the lattice ˛ZL � ˇZL, and
inverting the isomorphism to obtain ı D ��1

�
�.g/ı

�
. Figure 5.10 visualizes this

procedure. And even more, we can make use of the efficient 1D STFT routine to
compute the Gabor analysis and synthesis operations using that isomorphism.

The urge for the width and height of an image to be relatively prime to benefit from
that isomorphism is not a major restriction in practice. Considering large images and
a good localization of the analyzing prototype, the well-localized windowed image
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(d) Reconstruction by 7.5% of coefficients
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(f) Reconstruction by 0.75% of coefficients

FIGURE 5.11: Thresholding by non-separable window on a fully separable lattice.
The window is a 2D Gaussian, dilated by 2

3
and rotated by 0:05. The lattice is defined

by .˛1; ˛2; ˇ1; ˇ2/ D .20; 10; 16; 32/ with redundancy 2:25.
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� 0 45.8784 138.1565 277.0584
jˆj 518400 38880 10368 3888

k Qf � f kF 9:4573 � 10�15 0.1010 0.1678 0.2307

TABLE 5.4: Results of thresholding by non-separable atom on separable lattice

cutouts allow for a partition of the image into smaller parts that keep the format
requirements.

5.4.2 Matching the Atom to the Signal

Having the freedom to adapt the analysis atom to a given image or class of images
raises the question about how this could be achieved. In the publication [FKP96]
of Feichtinger, Prinz and Kozek an approach was mentioned to adapt the analyzing
prototype to an autocorrelation estimate of the image. The (cyclic) autocorrelation
estimate for an image f 2 CL1�L2 is given as

Qrf .k1; k2/´ hf ; T.k1;k2/f iF ; .k1; k2/ 2 ZL1 � ZL2 :

Subfigure 5.11a shows the (cropped) autocorrelation function of the zebra image. It
indicates a large vertical correlation width like we’d expect it from the dominating
line patterns on the body of the animal. The first step is now to match the analysis
atom to that estimate, and be it only coarsely. Subfigure 5.11b shows an example for
the occurring non-separable window.

However, adapting the window is not enough. If an atom is stretched or shrunken,
the lattice should be stretched or shrunken as well to avoid a decreased localization of
the dual atom. In our experiment we try to keep the dual well-localized by adapting
the shift parameters as well. Subfigure 5.11c shows the dual of the mentioned atom on
the lattice determined by .˛1; ˛2; ˇ1; ˇ2/ D .20; 10; 16; 32/, keeping the redundancy
at 2:25.

Using this atom, lattice and dual we want to repeat the thresholding experiment.
The thresholds are obtained by the same way as in Experiment 5.2.3. The corre-
sponding filtered reconstructions are shown in Figure 5.11 and the emerging numeri-
cal values in Table 5.4. Compared to the first experiment with a separable atom, i.e.,
Figure 5.4 on page 77 and Table 5.2 on page 78, the results aren’t really better for the
matched non-separable atom, except in the case of the highest threshold, where the
(norm) difference between the reconstruction and the original is a little less. Subfig-
ure 5.11f seems to reveal a few more details, although the distribution of the duals on
the image domain is prominent.

5.5 General 2D Atoms on General 4D Lattices

Without considering PF-lattices that are composed as a product of two non-separable
2D TF-lattices, we want to deal with the idea of general atoms on general 4D lattices
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(b) Dual on quincunx-like lattice .6; 16; 12; 8/

FIGURE 5.12: 2D non-separable dual atoms on 4D quincunx-like lattices. The lat-
tice in (a) uses the same parameters as that of Figure 5.1, but the sampling points on
the frequency domain are shifted by

�
ˇ1
2
; ˇ2
2

�
D .3; 8/ alternately.

in this section, because there seems to be no major advantage if the lattice is partially
separable. There is an implementation by Prinz to compute the dual for a certain 4D
quincunx-like case, what we demonstrate here. The function ppdw2qx.m computes
the dual for a lattice that is defined by shift parameters ˛1; ˛2; ˇ1; ˇ2 where ˇ1 and
ˇ2 are even numbers. With these even frequency shift parameters it is possible to
form a quincunx-like lattice by shifting the frequency sampling points by half of their
distance at every second time-position. This is illustrated in Figure 3.2 on page 36 for
a 2D TF-lattice.

If we think of traditional non-separable 2D TF-lattices, we only have a certain sub-
set (actually a sub-subgroup) of frequency-shifts involved at every time-position, or
vice versa. If the same set of frequencies were used at every position, we’re back to
the case of a separable lattice. A non-separable 4D lattice could start with a grid
on the image domain, but every point on that grid incorporates a different subset
of modulations. By using even frequency shift parameters, we’re able to build a grid
determined by .ˇ1; ˇ2/ on the frequency domain and include the

�
ˇ1
2
; ˇ2
2

�
-shifted ver-

sion of that grid to form a partition of a quincunx-like subgroup on 4ZL1 � ZL2 . These
grids are now taken alternately through the position sampling points. This is the case
that Prinz implemented in ppdw2qx.m, where the grid on the image domain is de-
termined by .˛1; ˛2/ and the grid on the frequency domain by .ˇ1; ˇ2/ that is shifted
by
�
ˇ1
2
; ˇ2
2

�
alternately. Figure 5.12 shows two examples for resulting dual windows

on lattices of the mentioned type. They indicate a better localization than those on
the grids that use the same shift parameters.

We also want to repeat the thresholding experiment on the zebra image by using a
lattice of the above kind. However, the computation of duals and of the Gabor analy-
sis and synthesis operations of images is still quite cumbersome for general 2D atoms
on general PF-lattices. Although efficient Gabor matrix factorizations are known,
there are currently no computationally quick implementations of the mentioned op-
erations. Plans to include efficient code for general lattices into Søndergaard’s Linear
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FIGURE 5.13: Thresholding by non-separable atom on 4D quincunx-like lattice

� 0 187.7358 57.4567
jˆj 129600 2592 9720

k Qf � f kF 3:4950 � 10�14 0.2148 0.1267

TABLE 5.5: Results of thresholding by general atom on 4D quincunx-like lattice

Time-Frequency Analysis Toolbox1 (LTFAT) have been delayed. The calculation of
a dual and the analysis and synthesis operations had to be done for a downscaled
240 � 240-version of the zebra image, what still took an impressively long time. Re-
sults of the thresholding experiment are shown in Figure 5.13 and Table 5.5. The
quincunx-like 4D lattice was determined by the same shift parameters as in Experi-
ment 5.2.3.

The present computational implementations are only efficient if they’re fed with
reasonably small amounts of data. There seem to be two approaches to handle larger
images by present code:

(1) Split an image into smaller, maybe overlapping tiles and do Gabor analysis and
synthesis of those tiles of decreased size, or

(2) Downsample image and atom, compute the dual of the downsampled atom by
using equivalent lattice parameters, do Gabor analysis and synthesis, and sample
the result up to the original size.

The first approach raises the question of how to get rid of border phenomena at the
tile borders that could appear after processing, because the DFT considers each tile
as being periodic at its borders. These artifacts might make it difficult to stitch the
processed tiles together to a complete image. This could be handled by choosing the
tiles in an overlapping manner and blend the processed image tiles at their borders in
a certain way. This approach is not handled further in this thesis, we’ll rather take a
closer look at the idea of downsampling.

1http://ltfat.sourceforge.net/

http://ltfat.sourceforge.net/
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FIGURE 5.14: Comparison of image downsampling methods

5.5.1 Data Reduction by Downsampling

In this subsection we briefly demonstrate an efficient signal downsampling mecha-
nism that makes use of the FFT, and show that the dual of a downsampled window
is numerically equal to the dual of the original window if the lattice parameters can
be scaled in the same manner. For simplicity, we express the idea for 1D signals first.

The challenge is to scale the samples of a signal f 2 CL of length L reasonably
into a new vector of length M D m

n
L 2 N for applicable m; n 2 N, no matter if M is

smaller or larger than L. Note thatm DM and n D L are always valid choices. IfM
is a fraction of L, i.e. M D L

n
, there could be the idea to extract every n-th entry of

the signal to obtain
�
f .0/; f .n/; : : : ; f .L�n/

�
2 CM . But a single sample f .j / does

not represent the behavior in the segment
�
f
�
j �

�
n
2

˘�
; : : : ; f

�
j C

˙
n
2

���
. The signal

should therefore be averaged such that the samples at the positions f0; n; : : : ; L � ng
contain the average of the signal in their neighborhood of length n. This is achieved
by convolving the signal with a window that has an essential support of length n,
prior to extracting the samples. To grant each position the same weight, the window
should be a box function with ones at f0; : : : ; n � 1g. Figure 5.14 shows examples
for scaling the zebra image down to size 120 � 120. Subfigure 5.14a is the result
of pure pixel extraction. Compared to subfigure 5.14b, which combines averaging
with pixel extraction, the result is smoother in the latter case. The third example is a
downscaling obtained by current image processing software.

The remaining problem is that of sampling a signal of length L up to length mL,
because if this is achieved, the downsampling to size M D

mL
n

can be done by the
above method. Having f D

�
f .0/; : : : ; f .L � 1/

�
, we want to get an upsampled

version F D
�
F.0/; : : : ; F .mL � 1/

�
where F.mj / D f .j / for j 2 hLi. How do

we get the samples in between as an interpolation of the known values? We want
to show how this can be done using the DFT. The main idea is to let the DFT tell
us what oscillations of length mL are contained if we only know each m-th sample.
Recovering the signal from its DFT is obtained by

f .j / D
1

L

L�1X
kD0

Of .k/ e2�ijk=L ; j 2 ZL :
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FIGURE 5.15: Dual 2D atoms by downsampling

Thus, we are seeking a sequence F such that

F.mj / D
1

L

L�1X
kD0

Of .k/ e2�imjk=.mL/ ; j 2 hLi :

This summation can be extended up to the index mL � 1 by defining Of .k/ ´ 0 for
L � k � mL � 1, and we can now consider

F.j / D
1

L

mL�1X
kD0

Of .k/ e2�ijk=.mL/
D

1

mL

mL�1X
kD0

yF .k/ e2�ijk=.mL/ ; j 2 ZmL :

This means that we can derive the desired function F 2 CmL simply by defining its
DFT as

yF D
�
yF .0/; : : : ; yF .L � 1/; yF .L/; : : : ; yF .mL � 1/

�
´

�
m Of .0/; : : : ; m Of .L � 1/; 0; : : : ; 0

�
:

But this is not the only solution for the condition F.mj / D f .j / for j 2 hLi. In
fact, it is fulfilled for all shifts TlL

yF for l 2 hmi, as the sequence Of is periodic with
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L m
n

M ˛ m
n
˛ ˇ kıM � �

ıkF

144 3
4

108 12 9 9 1:1136 � 10�4

144 2
3

96 12 8 8 1:1023 � 10�4

240 2
3

160 15 10 10 2:9901 � 10�6

TABLE 5.6: Accuracy of downsampled dual Gaussian windows

period L. One has to take care to also map the negative frequencies the correct way
from CL to CmL, and so the desired solution is given by

yF ´
�
m Of .0/; : : : ; m Of

�˙
L
2

�
� 1

�
; 0; : : : ; 0;m Of

�
�
�
L
2

˘�
; : : : ; m Of .�1/

�
:

The approach of doing data reduction for Gabor analysis by downsampling could
have various depths:

� Sample a signal in CL down to CM once and do all calculations by a lattice in
CM , or

� Find the Gabor parameters (atom and lattice) already in CL and transform
these settings and the signal to CM , where analysis and synthesis is done, or

� Only map the Gabor parameters from CL to CM , calculate the dual of the
downsampled atom, scale it back to length L and do Gabor analysis of the
original signal with the original atom and synthesis with the approximated dual
atom.

Obviously, the second and third possibilities raise the question to what extent a sam-
pling lattice can be scaled down as well. We want to see to what extent the dual of
a downsampled atom corresponds to the downsampled version of the original dual
window. This means, we try to sample a given atom g 2 CL down to h 2 CM with
M < L, compute its dual �ı 2 CM with respect to a certain lattice ƒM E ZM �bZM
and see whether it is similar to the original dual ı 2 CL with respect to a lattice
ƒ E ZL � cZL after sampling it down to ıM 2 CM . Considering that M D m

n
L, we

notice that we have to keep the redundancy as

redƒ D
N

L
D

m
n
N

m
n
L
D redƒM :

For a product lattice ƒ D ˛ZL � ˇZL we get jƒj D N D L2

˛ˇ
, and thus an equivalent

lattice in ZM �bZM would be determined by

jƒM j D
m

n
N D

M 2

˛MˇM
D

m2

n2
L2

˛MˇM
D

m
n
L2

˛ˇ
:

Therefore we either have .˛M ; ˇM / D
�
m
n
˛; ˇ

�
or .˛M ; ˇM / D

�
˛; m

n
ˇ
�
. But it is im-

mediately clear that we may only consider the first case where the time-shift parame-
ter is scaled, because we’re scaling the signal domain down and map the oscillations
j 7! e2�ijk=L in CL to j 7! e2�ijk=M in CM . This also reveals some important
restrictions on the choice of valid lattice parameters:
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(1) ˛; ˇ must be divisors of L such that

(2) m
n
˛ 2 N;

(3) m
n
˛ is a divisor of M and

(4) ˇ is a divisor of M as well.

For constructing a quincunx-like lattice, there’s another restriction on either ˇ or
both ˛ and m

n
˛ to be even. This might make it rather difficult to find matching pa-

rameters for a fixed M , but as the choice of M is another degree of freedom, the
problem isn’t that severe.

Figure 5.15 shows that the dual of a 2D downsampled atom looks similar to the
dual of the original 2D atom. Table 5.6 shows some results of the accuracy of this
approach by the example of 1D Gaussians.

5.6 Discussion and Outlook

The aim of this thesis was to examine the path that leads from general Gabor ana-
lysis to implementations of two-dimensional finite discrete Gabor expansions of im-
ages. We have shown how to understand the 2D elementary oscillations of the 2D
Fourier transform as building blocks of images and indicated the visualization prob-
lems for the emerging four dimensions of the STFT. The possible non-separability
of 4D position-frequency lattices has various depths and intervenes with the non-
separability of 2D atoms when it comes to numerical implementations. We were also
able to demonstrate known ways to make the analysis and synthesis operations faster.

What we haven’t considered here is the accomplishment and implementation of
“serious” image processing tasks such as compression, denoising and deblurring by
means of the Gabor transform. If reasonable image processing had to be done, one
has to get familiar with existing and approved methods and compare their perfor-
mance with implementations that involve Gabor systems. It is the goal of this final
section to provide references to literature and publications that already introduce im-
plementations of image processing tasks, but also to show up in what directions the
research could continue.

Discrete Gabor analysis for image processing was addressed e.g. in [Dau88] and
[Li94]. The task of image compression by Gabor expansion was treated by Ebrahimi
and Kunt in [EK91], where a wavelet-like setting of atoms and TF-shifts was cho-
sen. Cristobal and Navarro used Gabor expansion techniques in [CN94] for localized
contrast enhancement to remove clouds from satellite images.

Modulated 2D Gaussian functions (“Gabor filters”) were found to be suited for
the description of biological vision, modelling the behavior of simple cells in the vi-
sual cortex. Publications by Petkov include the tasks of contour detection, texture
classification and object recognition, e.g. in [GPK02] or [GPW03]. Another source
for object recognition is e.g. [BAJW98].
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A topic that this thesis didn’t touch so far was the concept of multi-window Gabor
frames that consist of finitely many different windows g1; : : : ; gr 2 L2.Rd / and possi-
bly different lattices ƒ1; : : : ; ƒr E Z2d . If the union

Sr
jD1 G .gj ; ƒj / of the (possibly

incomplete) Gabor systems G .gj ; ƒj / is a frame for L2.Rd / with frame operator

Sf D

rX
jD1

X
�j2ƒj

hf; �.�j /gj iL2 �.�j /gj D

rX
jD1

Sgjf ;

it could provide some better performance than a frame that only involves a single
window. The Fourier analysis of images unveiled that natural images are highly deter-
mined by the area-producing oscillations of low frequency, whereas higher frequen-
cies contribute to the edges, contours and sharpness. This suggests the consideration
of multi-window Gabor frames for image processing, using 2D windows with good
frequency resolution in the lower frequency region and windows with good spatial
resolution for the higher frequencies in an image. Publications on this topic are e.g.
[ZZP98] or [Li99].

Questions for continued research could be:

� How could multi-2D-window Gabor expansions be performed with general
windows on general 4D lattices?

[JT07] proposed algorithms for selecting the best-matching atoms for a signal from
a given multi-window dictionary.

� How could such an adaptive multi-window Gabor expansion be applied to the
2D case of images?

In the case of separable 2D atoms that allow for separate Gabor systems for each of
the two dimensions, the performance of the 2D frame can be measured by computing
the condition numbers of the two independent frame matrices. But we indicated that
the matrix representation of a 2D frame might become rather huge.

� How could the performance of general 2D frames be measured without build-
ing a huge frame matrix?

We mentioned in Section 1.7 that a tensor x 2 V ˝ W doesn’t have to be of a
separable type x D x1 ˝ x2 with x1 2 V and x2 2 W , but rather be representable as
a sum of separable tensors, i.e., x D

Pn
jD1 x

.1/
j ˝ x

.2/
j .

� Does one get a benefit from finding a representation g D
Pn
jD1 g

.1/
j ˝g

.2/
j with

g
.i/
j 2 CLi for a window g 2 CL1�L2?

The list of questions could continue like:

� How is the dual 2D window efficiently calculated for a lattice ƒ D � � y� with
non-separable subgroups � E ZL1 � ZL2 and y� E 4ZL1 � ZL2?
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� Can the Gabor analysis and synthesis operations be made significantly quicker
when splitting a general lattice into a union of shifts of a single grid? Could this
approach also ease the computation of the dual window?

� How is a Gabor expansion obtained by splitting an image into tiles of smaller
size?

� What is the exact mathematical background that the correct downsampling of
atom and lattice keep the behavior of the dual window?

� What other methods could be proposed to make the computation of 2D Gabor
expansions quicker?

This collection of references and questions does in no way claim to be complete.





Appendix A

MATLAB Code

Here the author provides the functions that were involved to produce the numerical
experiments and printed figures in this thesis. They were also tested to work with
Octave 2.9 and build upon code from the NuHAG MATLAB toolboxes1. The func-
tions by the author, A.1–A.6, are published under the GNU General Public License,
version 2. stft2q.m and istft2q.m are derived from code by P. Prinz.

A.1 nsgauss.m – Non-Separable 2D Gaussian

1 function g=nsgauss(p,q,vdil,hdil,rot)
2 % C o m p u t e s a non - s e p a r a b l e ( d i l a t e d + r o t a t e d ) 2 D G a u s s i a n

3 % U s a g e : g = n s g a u s s ( p , q , vdil , hdil , rot ) ;

4 % I n p u t : p , q .... size of g

5 % vdil ... v e r t i c a l d i l a t i o n f a c t o r ( b e f o r e r o t a t i o n )

6 % hdil ... h o r i z o n t a l d i l a t i o n f a c t o r ( b e f o r e r o t a t i o n )

7 % rot .... r o t a t i o n angle , e . g . pi /4

8 % E x a m p l e :

9 % norm ( n s g a u s s ( p , q ,1 ,1 ,0) - g a u s s n k ( p ) ’* g a u s s n k ( q ) ) == eps

10

11 % V e r s i o n 0 . 2 - 2 0 0 7 0 5 2 5

12 % by S t e p h a n P a u k n e r < s t e p h a n + math at p a u k n e r dot cc >

13 % L i c e n s e d u n d e r the GNU G e n e r a l P u b l i c L i c e n s e v2

14

15 D=[1/vdil 0; 0 1/hdil]; % d i l a t i o n m a t r i x

16 R=[cos(rot) -sin(rot); sin(rot) cos(rot)]’; % r o t a t i o n m a t r i x

17

18 sp=sqrt(p); sq=sqrt(q);
19 g=zeros(1,p*q);
20 for jp=-3:3
21 for jq=-3:3
22 [x y]=meshgrid( (0:p-1)/sp+jp*sp, (0:q-1)/sq+jq*sq );
23 v=D*R*[x(:)’; y(:)’];
24 g=g+exp(-pi*(v(1,:).^2 + v(2,:).^2));
25 end
26 end

1http://www.univie.ac.at/nuhag-php/mmodule/

http://www.univie.ac.at/nuhag-php/mmodule/
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27 g=reshape(g,q,p)’;
28 g=g/norm(g,’fro’);

A.2 acf2.m – 2D Autocorrelation Function

1 function ac=acf2(img);
2 % I m p l e m e n t a t i o n of the ACF of an i m a g e

3 % U s a g e : ac = acf2 ( img ) ;

4 % I n p u t : img ... i m a g e as m a t r i x of size [ p q ]

5 % O u t p u t : ac .... ACF of size [ p q ]

6

7 [p,q]=size(img);
8 ac=zeros(p,q);
9 % im = img (:) ;

10 % ii =1;

11 for ll=1:q
12 disp([num2str(ll) ’/’ num2str(q)])
13 for kk=1:p
14 % ac ( ii ) = im . ’* rot ( im , ii -1) ; % too slow

15 % ii = ii +1;

16 A=img.*rotrc(img,kk-1,ll-1);
17 ac(kk,ll)=sum(A(:));
18 end
19 end

A.3 stft2sep.m – STFT: Separable 2D Atom,
Separable Lattice

1 function c=stft2sep(img,g1,g2,a1,a2,b1,b2)
2 % C o m p u t e s the G a b o r a n a l y s i s c o e f f i c i e n t for an i m a g e in the

3 % case of a s e p a r a b l e 2 D atom g1 . ’* g2 and a f u l l y s e p a r a b l e

4 % 4 D lattice , d e t e r m i n e d by the s h i f t p a r a m e t e r s a1 , a2 , b1 , b2 ,

5 % by u s i n g stft . m .

6 %

7 % U s a g e : c = s t f t 2 s e p ( img , g1 , g2 , a1 , a2 , b1 , b2 ) ;

8 % c = s t f t 2 s e p ( img , g , a , b ) ; % If img is s q u a r e

9 %

10 % P a r a m e t e r s : img . . . . . I m a g e of size [ L1 L2 ]

11 % g1 , g2 ... A t o m s with l e n g t h ( g1 ) == L1 and l e n g t h ( g2 ) == L2

12 % a1 , a2 ... P o s i t i o n s h i f t p a r a m e t e r s w h e r e a1 | L1 and a2 | L2

13 % b1 , b2 ... F r e q u e n c y s h i f t p a r a m e t e r s w h e r e b1 | L1 and b2 | L2

14 %

15 % E x a m p l e : c == g a b b a s p ( g1 , a1 , b1 ) * img * g a b b a s p ( g2 , a2 , b2 ) . ’;

16 %
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17 if nargin~=4 & nargin~=7
18 error(’Invalid number of arguments!’);
19 elseif nargin==4
20 b1=a1; b2=a1; % freq s h i f t is at a1

21 a1=g2; a2=g2; % pos s h i f t is at g2

22 g2=g1; % atom is at g1

23 end
24

25 [L1 L2]=size(img);
26 if length(g1)~=L1 | length(g2)~=L2
27 error(’The lengths of the atoms have to match the image Õ

size!’);
28 end
29 tst=L1/a1*L1/b1*L2/a2*L2/b2;
30 if tst~=round(tst)
31 error(’One of the shift parameters does not divide one of Õ

the lengths!’);
32 end
33

34 N2=L2^2/a2/b2;
35 b=zeros(L1,N2);
36 for kk=1:L1 % l i n e s in i m a g e

37 b(kk,:)=reshape(stft(img(kk,:),g2,a2,b2), 1, N2);
38 end
39 N1=L1^2/a1/b1;
40 c=zeros(N1,N2);
41 for kk=1:N2
42 c(:,kk)=reshape(stft(b(:,kk).’,g1,a1,b1), 1, N1)’;
43 end

A.4 istft2sep.m – Inverse STFT in Separable Setting

1 function rimg=istft2sep(c,gd1,gd2,a1,a2,b1,b2)
2 % I n v e r s e o p e r a t i o n of c = s t f t 2 s e p ( img , g1 , g2 , a1 , a2 , b1 , b2 )

3 % or c = g a b b a s p ( g1 , a1 , b1 ) * img * g a b b a s p ( g2 , a2 , b2 ) . ’

4 %

5 % U s a g e : rimg = i s t f t 2 s e p ( c , gd1 , gd2 , a1 , a2 , b1 , b2 )

6 % rimg = i s t f t 2 s e p ( c , gd , a , b ) % If i m a g e was s q u a r e

7 % ( The s h i f t p a r a m e t e r s are n e e d e d for c o r r e c t i n p u t to i s t f t )

8 %

9 % P a r a m e t e r s : c . . . . . . . . . The 2 D G a b o r c o e f f i c i e n t

10 % gd1 , gd2 ... Dual a t o m s to g1 and g2

11 % a1 , a2 . . . . . 2 D s h i f t p a r a m e t e r s

12 % b1 , b2 . . . . . 2 D m o d u l a t i o n p a r a m e t e r s

13 %

14 % O u t p u t : rimg . . . . . . The r e c o n s t r u c t e d i m a g e
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15 %

16 if nargin~=4 & nargin~=7
17 error(’Invalid number of arguments!’);
18 elseif nargin==4
19 b1=a1; b2=a1; % freq s h i f t is at a1

20 a1=gd2; a2=gd2; % pos s h i f t is at gd2

21 gd2=gd1; % atom is at gd1

22 end
23

24 [N1 N2]=size(c);
25 L1=sqrt(N1*a1*b1); L2=sqrt(N2*a2*b2); % i m a g e size

26 ac1=L1/a1; bc1=L1/b1; ac2=L2/a2; bc2=L2/b2; % n u m b e r of c h a n n e l s

27 dummy=[];
28 b=zeros(L1,N2); rimg=zeros(L1,L2);
29

30 for kk=1:N2 % in N1 , out L1

31 b(:,kk)=istft(reshape(c(:,kk)’,bc1,ac1),dummy,gd1);
32 end
33 for kk=1:L1 % in N2 , out L2

34 rimg(kk,:)=istft(reshape(b(kk,:),bc2,ac2),dummy,gd2);
35 end

A.5 gabfc.m – Gabor Matrix, Modulation Priority

1 function Gc=gabfc(G,fgap)
2 % R e o r d e r G a b o r m a t r i x to c e n t e r the f r e q u e n c y s h i f t s

3 % (0 to m i d d l e ) .

4 % Gc = g a b f c ( G , fgap ) w h e r e G = g a b b a s p ( g , tgap , fgap )

5 %

6 [N L]=size(G);
7 tgap=L^2/N/fgap;
8 Gc=zeros(N,L);
9 % L / tgap b l o c k s with L / fgap m o d u l a t i o n s , t h e s e must be c e n t e r e d

10 x=1:L/fgap;
11 xc=fftshift(x);
12 for t=0:L/tgap-1
13 Gc(xc+t*L/fgap,:)=G(x+t*L/fgap,:);
14 end

A.6 gabtf.m – Gabor Matrix, Translation Priority

1 function H=gabtf(G,tgap)
2 % R e o r d e r G a b o r m a t r i x to f i r s t c o n t a i n the time shifts ,

3 % then freq .

4 % H = g a b t f ( G , tgap ) w h e r e G = g a b b a s p ( g , tgap , fgap )
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5 %

6 [N L]=size(G);
7 fgap=L^2/N/tgap;
8 H=zeros(N,L);
9 x=1:L/fgap:N; % Span l i n e s of G with s t e p s of

10 % the n u m b e r of f - c h a n n e l s

11 for t=0:L/fgap-1 % How many b l o c k s with s h i f t s of a c e r t a i n mod ?

12 H((1:L/tgap)+t*L/tgap,:)=G(x+t,:);
13 end

A.7 stft2q.m – STFT: General 2D Atom,
Quincunx-Like Lattice

1 function ST = stft2q(X,G,a1,a2,b1,b2);
2 % STFT of i m a g e with g e n e r a l 2 D atom on quincunx - like

3 % 4 D lattice , d e r i v e d from Prinz ’ g a b b a s 2 q . m

4 %

5 % U s a g e : ST = s t f t 2 q ( X , G , a1 , a2 , b1 , b2 )

6 %

7 % I n p u t : X . . . . . . . . . . . . I m a g e of size [ L1 L2 ]

8 % G . . . . . . . . . . . . W i n d o w of size [ L1 L2 ]

9 % a1 , a2 , b1 , b2 .. L a t t i c e p a r a m e t e r s !! with EVEN b1 , b2 !!

10 %

11 % O u t p u t : ST . . . . . . . . . . . STFT c o e f f i c i e n t s

12 %

13 X=X(:).’;
14 [m,n] = size(G);
15 red=(n*m)/(a1*a2*b1*b2)
16 count = 0;
17

18 ST = zeros(1,n*m*red);
19 disp([’Size: ’ num2str(n*m*red)])
20

21 for k1 = 0 : a1 : m-a1
22 disp([’ ’ num2str(k1) ’/’ num2str(m-a1)])
23 for k2 = 0 : a2 : n-a2
24 disp([num2str(k2) ’/’ num2str(n-a2)]) % v e r b o s e

25 if rem(k1/a1 ,2) % if k1 / a1 is odd then TRUE

26 a1q = b1/2;
27 else
28 a1q = 0;
29 end
30 if rem(k2/a2 ,2) % if k2 / a2 is odd then TRUE

31 a2q = b2/2;
32 else
33 a2q = 0;
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34 end
35 grf = fft2(rotrc(G,k1,k2)); % for the m o d u l a t i o n

36 for k4 = 0 : b2 : n - b2
37 for k3 = 0 : b1 : m - b1
38 g=ifft2(rotrc(grf,k3+a1q,k4+a2q)); % m o d u l a t i o n

39 count = count+1;
40 ST(count) = X*g(:);
41 end
42 end
43 end
44 end

A.8 istft2q.m – Inverse STFT in General Setting

1 function X = istft2q(ST,GD,a1,a2,b1,b2);
2 % I n v e r s e o p e r a t i o n of s t f t 2 q . m , d e r i v e d from Prinz ’ g a b b a s 2 q . m

3 % U s a g e : X = i s t f t 2 q ( ST , GD , a1 , a2 , b1 , b2 )

4 %

5 % I n p u t : ST . . . . . . . . . . . R e s u l t of s t f t 2 q ( X , G , a1 , a2 , b1 , b2 )

6 % GD . . . . . . . . . . . 2 D dual atom to G

7 % a1 , a2 , b1 , b2 .. L a t t i c e p a r a m e t e r s !! with EVEN b1 , b2 !!

8 %

9 % O u t p u t : X . . . . . . . . . . . . R e c o n s t r u c t e d i m a g e

10 %

11

12 % The dual is a l r e a d y c o n j u g a t e d :

13 GD=GD’; GD=GD.’;
14 [m,n] = size(GD);
15 red=(n*m)/(a1*a2*b1*b2)
16 count = 0;
17

18 X = zeros(n*m,1);
19 % disp ([ ’ Size : ’ n u m 2 s t r ( n * m * red ) ])

20

21 for k1 = 0 : a1 : m-a1
22 disp([num2str(k1) ’/’ num2str(m-a1)])
23 for k2 = 0 : a2 : n-a2
24 if rem(k1/a1 ,2) % if k1 / a1 is odd then TRUE

25 a1q = b1/2;
26 else
27 a1q = 0;
28 end
29 if rem(k2/a2 ,2) % if k2 / a2 is odd then TRUE

30 a2q = b2/2;
31 else
32 a2q = 0;
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33 end
34 gdrf = fft2(rotrc(GD,k1,k2)); % for the m o d u l a t i o n

35 for k4 = 0 : b2 : n - b2
36 for k3 = 0 : b1 : m - b1
37 gd=ifft2(rotrc(gdrf,k3+a1q,k4+a2q));% m o d u l a t i o n

38 count = count+1;
39 gd=gd(:)’;
40 X = X + ST(count)*gd(:);
41 end
42 end
43 end
44 end
45 X=reshape(X,m,n);
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